Kim DH, Park JI, Chung SJ, Park JD, Park NK, Han JH. Cleavage of beta-lactone ring by serine protease. Mechanistic implications.
Bioorg Med Chem 2002;
10:2553-60. [PMID:
12057644 DOI:
10.1016/s0968-0896(02)00108-6]
[Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both enantiomers of 3-benzyl-2-oxetanone (1) were found to be slowly hydrolyzed substrates of alpha-chymotrypsin having k(cat) values of 0.134+/-0.008 and 0.105+/-0.004 min(-1) for (R)-1 and (S)-1, respectively, revealing that alpha-CT is virtually unable to differentiate the enantiomers in the hydrolysis of 1. The initial step to form the acyl-enzyme intermediate by the attack of Ser-195 hydroxyl on the beta-lactone ring at the 2-position in the hydrolysis reaction may not be enzymatically driven, but the relief of high ring strain energy of beta-lactone may constitute a major driving force. The deacylation step is also attenuated, which is possibly due to the hydrogen bond that would be formed between the imidazole nitrogen of His-57 and the hydroxyl group generated during the acylation in the case of (R)-1, but in the alpha-CT catalyzed hydrolysis of (S)-1 the imidazole nitrogen may form a hydrogen bond with the ester carbonyl oxygen.
Collapse