1
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Nowzari ZR, D'Esposito RJ, Vangaveti S, Chen AA. Elucidating the influence of RNA modifications and Magnesium ions on tRNA Phe conformational dynamics in S. cerevisiae : Insights from Replica Exchange Molecular Dynamics simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584441. [PMID: 38559076 PMCID: PMC10979867 DOI: 10.1101/2024.03.11.584441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Post-transcriptional modifications in RNA can significantly impact their structure and function. In particular, transfer RNAs (tRNAs) are heavily modified, with around 100 different naturally occurring nucleotide modifications contributing to codon bias and decoding efficiency. Here, we describe our efforts to investigate the impact of RNA modifications on the structure and stability of tRNA Phenylalanine (tRNA Phe ) from S. cerevisiae using molecular dynamics (MD) simulations. Through temperature replica exchange MD (T-REMD) studies, we explored the unfolding pathway to understand how RNA modifications influence the conformational dynamics of tRNA Phe , both in the presence and absence of magnesium ions (Mg 2+ ). We observe that modified nucleotides in key regions of the tRNA establish a complex network of hydrogen bonds and stacking interactions which is essential for tertiary structure stability of the tRNA. Furthermore, our simulations show that modifications facilitate the formation of ion binding sites on the tRNA. However, high concentrations of Mg 2+ ions can stabilize the tRNA tertiary structure in the absence of modifications. Our findings illuminate the intricate interactions between modifications, magnesium ions, and RNA structural stability.
Collapse
|
3
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
4
|
Jena S, Horn J, Suryanarayanan R, Friess W, Aksan A. Effects of Excipient Interactions on the State of the Freeze-Concentrate and Protein Stability. Pharm Res 2016; 34:462-478. [DOI: 10.1007/s11095-016-2078-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
|
5
|
Sengupta A, Sung HL, Nesbitt DJ. Amino Acid Specific Effects on RNA Tertiary Interactions: Single-Molecule Kinetic and Thermodynamic Studies. J Phys Chem B 2016; 120:10615-10627. [PMID: 27718572 DOI: 10.1021/acs.jpcb.6b05840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In light of the current models for an early RNA-based universe, the potential influence of simple amino acids on tertiary folding of ribozymal RNA into biochemically competent structures is speculated to be of significant evolutionary importance. In the present work, the folding-unfolding kinetics of a ubiquitous tertiary interaction motif, the GAAA tetraloop-tetraloop receptor (TL-TLR), is investigated by single-molecule fluorescence resonance energy transfer spectroscopy in the presence of natural amino acids both with (e.g., lysine, arginine) and without (e.g., glycine) protonated side chain residues. By way of control, we also investigate the effects of a special amino acid (e.g., proline) and amino acid mimetic (e.g., betaine) that contain secondary or quaternary amine groups rather than a primary amine group. This combination permits systematic study of amino acid induced (or amino acid like) RNA folding dynamics as a function of side chain complexity, pKa, charge state, and amine group content. Most importantly, each of the naturally occurring amino acids is found to destabilize the TL-TLR tertiary folding equilibrium, the kinetic origin of which is dominated by a decrease in the folding rate constant (kdock), also affected by a strongly amino acid selective increase in the unfolding rate constant (kundock). To further elucidate the underlying thermodynamics, single-molecule equilibrium constants (Keq) for TL-TLR folding have been probed as a function of temperature, which reveal an amino acid dependent decrease in both overall exothermicity (ΔΔH° > 0) and entropic cost (-TΔΔS° < 0) for the overall folding process. Temperature-dependent studies on the folding/unfolding kinetic rate constants reveal analogous amino acid specific changes in both enthalpy (ΔΔH⧧) and entropy (ΔΔS⧧) for accessing the transition state barrier. The maximum destabilization of the TL-TLR tertiary interaction is observed for arginine, which is consistent with early studies of arginine and guanidine ion-inhibited self-splicing kinetics for the full Tetrahymena ribozyme [ Yarus , M. ; Christian , E. L. Nature 1989 , 342 , 349 - 350 ; Yarus , M. Science 1988 , 240 , 1751 - 1758 ].
Collapse
Affiliation(s)
- Abhigyan Sengupta
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - Hsuan-Lei Sung
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, National Institute of Standards and Technology and Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Dyubankova N, Sochacka E, Kraszewska K, Nawrot B, Herdewijn P, Lescrinier E. Contribution of dihydrouridine in folding of the D-arm in tRNA. Org Biomol Chem 2015; 13:4960-6. [PMID: 25815904 DOI: 10.1039/c5ob00164a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Posttranscriptional modifications of transfer RNAs (tRNAs) are proven to be critical for all core aspects of tRNA function. While the majority of tRNA modifications were discovered in the 1970s, their contribution in tRNA folding, stability, and decoding often remains elusive. In this work an NMR study was performed to obtain more insight in the role of the dihydrouridine (D) modification in the D-arm of tRNAi(Met) from S. pombe. While the unmodified oligonucleotide adopted several undefined conformations that interconvert in solution, the presence of a D nucleoside triggered folding into a hairpin with a stable stem and flexible loop region. Apparently the D modification is required in the studied sequence to fold into a stable hairpin. Therefore we conclude that D contributes to the correct folding and stability of D-arm in tRNA. In contrast to what is generally assumed for nucleic acids, the sharp 'imino' signal for the D nucleobase at 10 ppm in 90% H2O is not indicative for the presence of a stable hydrogen bond. The strong increase in pKa upon loss of the aromatic character in the modified nucleobase slows down the exchange of its 'imino' proton significantly, allowing its observation even in an isolated D nucleoside in 90% H2O in acidic to neutral conditions.
Collapse
Affiliation(s)
- N Dyubankova
- Medicinal Chemistry, Department of Pharmaceutical Sciences, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
7
|
Pereyaslavets LB, Sokolovsky IV, Galzitskaya OV. FoldNucleus: web server for the prediction of RNA and protein folding nuclei from their 3D structures. Bioinformatics 2015; 31:3374-6. [DOI: 10.1093/bioinformatics/btv369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/10/2015] [Indexed: 11/12/2022] Open
|
8
|
Abstract
Nearly two decades after Westhof and Michel first proposed that RNA tetraloops may interact with distal helices, tetraloop–receptor interactions have been recognized as ubiquitous elements of RNA tertiary structure. The unique architecture of GNRA tetraloops (N=any nucleotide, R=purine) enables interaction with a variety of receptors, e.g., helical minor grooves and asymmetric internal loops. The most common example of the latter is the GAAA tetraloop–11 nt tetraloop receptor motif. Biophysical characterization of this motif provided evidence for the modularity of RNA structure, with applications spanning improved crystallization methods to RNA tectonics. In this review, we identify and compare types of GNRA tetraloop–receptor interactions. Then we explore the abundance of structural, kinetic, and thermodynamic information on the frequently occurring and most widely studied GAAA tetraloop–11 nt receptor motif. Studies of this interaction have revealed powerful paradigms for structural assembly of RNA, as well as providing new insights into the roles of cations, transition states and protein chaperones in RNA folding pathways. However, further research will clearly be necessary to characterize other tetraloop–receptor and long-range tertiary binding interactions in detail – an important milestone in the quantitative prediction of free energy landscapes for RNA folding.
Collapse
|
9
|
Abstract
Mg(2+) is essential for the proper folding and function of RNA, though the effect of Mg(2+) concentration on the free energy, enthalpy, and entropy landscapes of RNA folding is unknown. This work exploits temperature-controlled single-molecule FRET methods to address the thermodynamics of RNA folding pathways by probing the intramolecular docking/undocking kinetics of the ubiquitous GAAA tetraloop-receptor tertiary interaction as a function of [Mg(2+)]. These measurements yield the barrier and standard state enthalpies, entropies, and free energies for an RNA tertiary transition, in particular, revealing the thermodynamic origin of [Mg(2+)]-facilitated folding. Surprisingly, these studies reveal that increasing [Mg(2+)] promotes tetraloop-receptor interaction by reducing the entropic barrier (-TΔS(++)(dock)) and the overall entropic penalty (-TΔS(+) (dock)) for docking, with essentially negligible effects on both the activation enthalpy (ΔH(++)(dock)) and overall exothermicity (ΔH(+)(dock)). These observations contrast with the conventional notion that increasing [Mg(2+)] facilitates folding by minimizing electrostatic repulsion of opposing RNA helices, which would incorrectly predict a decrease in ΔH(++)(dock)) and ΔH(+)(dock)) with [Mg(2+)]. Instead we propose that higher [Mg(2+)] can aid RNA folding by decreasing the entropic penalty of counterion uptake and by reducing disorder of the unfolded conformational ensemble.
Collapse
|
10
|
|
11
|
Pereyaslavets LB, Baranov MV, Leonova EI, Galzitskaya OV. Prediction of folding nuclei in tRNA molecules. BIOCHEMISTRY (MOSCOW) 2011; 76:236-44. [PMID: 21568857 DOI: 10.1134/s0006297911020106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prediction of folding nuclei in RNA molecules allows one to look in a new way at the problem of possible RNA base sequence folding and at problems associated with incorrect RNA folding, as well as at RNA structure stability. We have chosen a model and energy parameters for description of RNA structure. The algorithm for studying processes including protein folding/unfolding was successfully applied to calculations on tRNA. Four tRNA molecules were considered whose structures were obtained in the free state (tRNA(Phe), tRNA(Asp), tRNA(fMet), and tRNA(Lys)). The calculated Φ-values for tRNA molecules correlate with experimental data showing that nucleotide residues in the D and T hairpin regions are involved in tRNA structure last, or more exactly, they are not included in the tRNA folding nucleus. High Φ-values in the anticodon hairpin region show that the nucleus of tRNA folding is localized just in that place.
Collapse
Affiliation(s)
- L B Pereyaslavets
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
12
|
Koculi E, Thirumalai D, Woodson SA. Counterion charge density determines the position and plasticity of RNA folding transition states. J Mol Biol 2006; 359:446-54. [PMID: 16626736 DOI: 10.1016/j.jmb.2006.03.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 03/04/2006] [Accepted: 03/15/2006] [Indexed: 11/30/2022]
Abstract
The self-assembly of RNA structure depends on the interactions of counterions with the RNA and with each other. Comparison of various polyamines showed that the tertiary structure of the Tetrahymena ribozyme is more stable when the counterions are small and highly charged. By monitoring the folding kinetics of the ribozyme as a function of polyamine concentration, we now find that the charge density of the counterions determines the positions of the folding transition states. The transition state ensemble (TSE) between U and N moves away from the native state as the counterion valence and charge density increase, as predicted by the Hammond postulate. The TSE is broader and less structured when the RNA is refolded in polyamines rather than Mg2+. That the charge density of the counterions determines the plasticity of the TSE demonstrates the importance of interactions among condensed counterions for the self-assembly of RNA structures. We propose that the major barrier to RNA folding is dominated by entropy changes when counterion charge density is low and enthalpy differences when it is high.
Collapse
Affiliation(s)
- Eda Koculi
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
13
|
Grosman C. Free-energy landscapes of ion-channel gating are malleable: changes in the number of bound ligands are accompanied by changes in the location of the transition state in acetylcholine-receptor channels. Biochemistry 2004; 42:14977-87. [PMID: 14674774 PMCID: PMC1463891 DOI: 10.1021/bi0354334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholine-receptor channels (AChRs) are allosteric membrane proteins that mediate synaptic transmission by alternatively opening and closing ("gating") a cation-selective transmembrane pore. Although ligand binding is not required for the channel to open, the binding of agonists (for example, acetylcholine) increases the closed right harpoon over left harpoon open equilibrium constant because the ion-impermeable --> ion-permeable transition of the ion pathway is accompanied by a low-affinity --> high-affinity change at the agonist-binding sites. The fact that the gating conformational change of muscle AChRs can be kinetically modeled as a two-state reaction has paved the way to the experimental characterization of the corresponding transition state, which represents a snapshot of the continuous sequence of molecular events separating the closed and open states. Previous studies of fully (di) liganded AChRs, combining single-channel kinetic measurements, site-directed mutagenesis, and data analysis in the framework of the linear free-energy relationships of physical organic chemistry, have suggested a transition-state structure that is consistent with channel opening being an asynchronous conformational change that starts at the extracellular agonist-binding sites and propagates toward the intracellular end of the pore. In this paper, I characterize the gating transition state of unliganded AChRs, and report a remarkable difference: unlike that of diliganded gating, the unliganded transition state is not a hybrid of the closed- and open-state structures but, rather, is almost indistinguishable from the open state itself. This displacement of the transition state along the reaction coordinate obscures the mechanism underlying the unliganded closed right harpoon over left harpoon open reaction but brings to light the malleable nature of free-energy landscapes of ion-channel gating.
Collapse
Affiliation(s)
- Claudio Grosman
- Department of Molecular and Integrative Physiology and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
14
|
Bartley LE, Zhuang X, Das R, Chu S, Herschlag D. Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA. J Mol Biol 2003; 328:1011-26. [PMID: 12729738 DOI: 10.1016/s0022-2836(03)00272-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Docking of the P1 duplex into the pre-folded core of the Tetrahymena group I ribozyme exemplifies the formation of tertiary interactions in the context of a complex, structured RNA. We have applied Phi-analysis to P1 docking, which compares the effects of modifications on the rate constant for docking (k(dock)) with the effects on the docking equilibrium (K(dock)). To accomplish this we used a single molecule fluorescence resonance energy transfer assay that allows direct determination of the rate constants for formation of thermodynamically favorable, as well as unfavorable, states. Modification of the eight groups of the P1 duplex that make tertiary interactions with the core and changes in solution conditions decrease K(dock) up to 500-fold, whereas k(dock) changes by </=2-fold. The absence of effects on k(dock), both from atomic modifications and global perturbations, strongly suggests that the transition state for docking is early and does not closely resemble the docked state. These results, the slow rate of docking of 3s(-1), and the observation that a modification that is expected to increase the degrees of freedom between the P1 duplex and the ribozyme core accelerates docking, suggest a model in which a kinetic trap(s) slows docking substantially. Nonetheless, urea does not increase k(dock), suggesting that there is little change in the exposed surface area between the trapped, undocked state and the transition state. The findings highlight that urea and temperature dependencies can be inadequate to diagnose the presence of kinetic traps in a folding process. The results described here, combined with previous work, provide an in-depth view of an RNA tertiary structure formation event and suggest that large, highly structured RNAs may have local regions that are misordered.
Collapse
Affiliation(s)
- Laura E Bartley
- Department of Biochemistry, B400 Beckman Center, Stanford University, Stanford, CA 94305-5307, USA
| | | | | | | | | |
Collapse
|
15
|
Maglott EJ, Glick GD. Rapid magnesium chelation as a method to study real-time tertiary unfolding of RNA. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2001; Chapter 11:Unit 11.7. [PMID: 18428833 DOI: 10.1002/0471142700.nc1107s06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This unit describes a method to measure the unfolding of RNA tertiary structure on a millisecond time scale. A stopped-flow spectrophotometer is used to measure the rate of unfolding induced by the addition of EDTA to an RNA whose tertiary structure has been stabilized in the presence of magnesium ions. Using this methodology, rate constants for unfolding of tertiary or secondary structure can be obtained over a range of temperatures, and these values can be used to construct Arrhenius and Eyring plots, from which activation energy, Arrhenius pre-exponential factor, and enthalpy and entropy of activation can be obtained. These data provide information about the energy of the transition state and the energy barriers between secondary and tertiary structure, which is necessary for predicting RNA tertiary structure from secondary structure.
Collapse
Affiliation(s)
- E J Maglott
- University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
16
|
Abstract
Our current understanding of Mg(2+) binding to RNA, in both thermodynamic and structural terms, is largely based on classical studies of transfer RNAs. Based on these studies, it is clear that magnesium ions are crucial for stabilizing the folded structure of tRNA. We present here a rigorous theoretical model based on the nonlinear Poisson-Boltzmann (NLPB) equation for understanding Mg(2+) binding to yeast tRNA(Phe). We use this model to interpret a variety of experimental Mg(2+) binding data. In particular, we find that the NLPB equation provides a remarkably accurate description of both the overall stoichiometry and the free energy of Mg(2+) binding to yeast tRNA(Phe) without any fitted parameters. In addition, the model accurately describes the interaction of Mg(2+) with localized regions of the RNA as determined by the pK(a) shift of differently bound fluorophores. In each case, we find that the model also reproduces the univalent salt-dependence and the anticooperativity of Mg(2+) binding. Our results lead us to a thermodynamic description of Mg(2+) binding to yeast tRNA(Phe) based on the NLPB equation. In this model, Mg(2+) binding is simply explained by an ensemble of ions distributed according to a Boltzmann weighted average of the mean electrostatic potential around the RNA. It appears that the entire ensemble of electrostatically bound ions superficially mimics a few strongly coordinated ions. In this regard, we find that Mg(2+) stabilizes the tertiary structure of yeast tRNA(Phe) in part by accumulating in regions of high negative electrostatic potential. These regions of Mg(2+) localization correspond to bound ions that are observed in the X-ray crystallographic structures of yeast tRNA(Phe). Based on our results and the available thermodynamic data, there is no evidence that specifically coordinated Mg ions have a significant role in stabilizing the native tertiary structure of yeast tRNA(Phe) in solution.
Collapse
MESH Headings
- Binding Sites
- Crystallography, X-Ray
- Fluorescent Dyes/metabolism
- Ions
- Magnesium/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Poisson Distribution
- RNA Stability
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Salts/metabolism
- Solutions
- Static Electricity
- Thermodynamics
- Yeasts/genetics
Collapse
Affiliation(s)
- V K Misra
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | | |
Collapse
|