1
|
Xin X, Sheng W, Zhang Q, Qi R, Zhu Q, Zhu C. Synthesis and characterization of homometallic cobalt complexes with metal-metal interactions. Dalton Trans 2024; 53:15696-15702. [PMID: 39248639 DOI: 10.1039/d4dt01301h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Complexes featuring metal-metal bonds play crucial roles in catalysis and small molecule activation due to the synergistic effects between the metals. Here, we report a series of homometallic cobalt complexes with metal-metal interactions that have been successfully stabilized by a multidentate ligand platform. Theoretical studies on metal-metal interactions in these cobalt complexes are discussed.
Collapse
Affiliation(s)
- Xiaoqing Xin
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Weiming Sheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qian Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), SICAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Bhunia M, Sandoval-Pauker C, Fehn D, Grant LN, Senthil S, Gau MR, Ozarowski A, Krzystek J, Telser J, Pinter B, Meyer K, Mindiola DJ. Divalent Titanium via Reductive N-C Coupling of a Ti IV Nitrido with π-Acids. Angew Chem Int Ed Engl 2024; 63:e202404601. [PMID: 38619509 DOI: 10.1002/anie.202404601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The nitrido-ate complex [(PN)2Ti(N){μ2-K(OEt2)}]2 (1) (PN-=(N-(2-PiPr2-4-methylphenyl)-2,4,6-Me3C6H2) reductively couples CO and isocyanides in the presence of DME or cryptand (Kryptofix222), to form rare, five-coordinate TiII complexes having a linear cumulene motif, [K(L)][(PN)2Ti(NCE)] (E=O, L=Kryptofix222, (2); E=NAd, L=3 DME, (3); E=NtBu, L=3 DME, (4); E=NAd, L=Kryptofix222, (5)). Oxidation of 2-5 with [Fc][OTf] afforded an isostructural TiIII center containing a neutral cumulene, [(PN)2Ti(NCE)] (E=O, (6); E=NAd (7), NtBu (8)) and characterization by CW X-band EPR spectroscopy, revealed unpaired electron to be metal centric. Moreover, 1e- reduction of 6 and 7 in the presence of Kryptofix222cleanly reformed corresponding discrete TiII complexes 2 and 5, which were further characterized by solution magnetization measurements and high-frequency and -field EPR (HFEPR) spectroscopy. Furthermore, oxidation of 7 with [Fc*][B(C6F5)4] resulted in a ligand disproportionated TiIV complex having transoid carbodiimides, [(PN)2Ti(NCNAd)2] (9). Comparison of spectroscopic, structural, and computational data for the divalent, trivalent, and tetravalent systems, including their 15N enriched isotopomers demonstrate these cumulenes to decrease in order of backbonding as TiII→TiIII→TiIV and increasing order of π-donation as TiII→TiIII→TiIV, thus displaying more covalency in TiIII species. Lastly, we show a synthetic cycle whereby complex 1 can deliver an N-atom to CO and CNAd.
Collapse
Affiliation(s)
- Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Dominik Fehn
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Lauren N Grant
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuruthi Senthil
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310, USA
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310, USA
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois, 60605, USA
| | - Balazs Pinter
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Ishida Y, Nakanishi Y, Hiratsuka T, Kawaguchi H. Hydrazido complexes prepared by methylation of an anionic end-on bridging dinitrogen dititanium complex. Chem Commun (Camb) 2024; 60:7459-7462. [PMID: 38946396 DOI: 10.1039/d4cc02080d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Here we report stepwise methylation of end-on bridging dinitrogen to a hydrazido ligand to a pentamethylhydrazinium salt, which is mediated by a titanium system with a tripodal aryloxide supporting ligand. The results constitute a synthetic cycle for pentamethylhydrazinium formation from dinitrogen and methyl iodide. We also describe silylation of the dinitrogen complex and carboxylation of the hydrazido complex.
Collapse
Affiliation(s)
- Yutaka Ishida
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Yusuke Nakanishi
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Takuma Hiratsuka
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| | - Hiroyuki Kawaguchi
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
4
|
Wang GX, Shan C, Chen W, Wu B, Zhang P, Wei J, Xi Z, Ye S. Unusual Electronic Structures of an Electron Transfer Series of [Cr(μ-η 1 : η 1 -N 2 )Cr] 0/1+/2. Angew Chem Int Ed Engl 2024; 63:e202315386. [PMID: 38299757 DOI: 10.1002/anie.202315386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
In dinitrogen (N2 ) fixation chemistry, bimetallic end-on bridging N2 complexes M(μ-η1 : η1 -N2 )M can split N2 into terminal nitrides and hence attract great attention. To date, only 4d and 5d transition complexes, but none of 3d counterparts, could realize such a transformation. Likewise, complexes {[Cp*Cr(dmpe)]2 (μ-N2 )}0/1+/2+ (1-3) are incapable to cleave N2 , in contrast to their Mo congeners. Remarkably, cross this series the N-N bond length of the N2 ligand and the N-N stretching frequency exhibit unprecedented nonmonotonic variations, and complexes 1 and 2 in both solid and solution states display rare thermally activated ligand-mediated two-center spin transitions, distinct from discrete dinuclear spin crossovers. In-depth analyses using wave function based ab initio calculations reveal that the Cr-N2 -Cr bonding in complexes 1-3 is distinguished by strong multireference character and cannot be described by solely one electron configuration or Lewis structure, and that all intriguing spectroscopic observations originate in their sophisticate multireference electronic structures. More critical is that such multireference bonding of complexes 1-3 is at least a key factor that contributes to their kinetic inertness toward N2 splitting. The mechanistic understanding is then used to rationalize the disparate reactivity of related 3d M(μ-η1 : η1 -N2 )M complexes compared to their 4d and 5d analogs.
Collapse
Affiliation(s)
- Gao-Xiang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Chunxiao Shan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Botao Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
5
|
Jori N, Keener M, Rajeshkumar T, Scopelliti R, Maron L, Mazzanti M. Dinitrogen cleavage by a dinuclear uranium(iii) complex. Chem Sci 2023; 14:13485-13494. [PMID: 38033909 PMCID: PMC10686047 DOI: 10.1039/d3sc05253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Understanding the role of multimetallic cooperativity and of alkali ion-binding in the second coordination sphere is important for the design of complexes that can promote dinitrogen (N2) cleavage and functionalization. Herein, we compare the reaction products and mechanism of N2 reduction of the previously reported K2-bound dinuclear uranium(iii) complex, [K2{[UIII(OSi(OtBu)3)3]2(μ-O)}], B, with those of the analogous dinuclear uranium(iii) complexes, [K(2.2.2-cryptand)][K{UIII(OSi(OtBu)3)3}2(μ-O)], 1, and [K(2.2.2-cryptand)]2[{UIII(OSi(OtBu)3)3}2(μ-O)], 2, where one or two K+ ions have been removed from the second coordination sphere by addition of 2.2.2-cryptand. In this study, we found that the complete removal of the K+ ions from the inner coordination sphere leads to an enhanced reducing ability, as confirmed by cyclic voltammetry studies, of the resulting complex 2, and yields two new species upon N2 addition, namely the U(iii)/U(iv) complex, [K(2.2.2-cryptand)][{UIII(OSi(OtBu)3)3}(μ-O){UIV(OSi(OtBu)3)3}], 3, and the N2 cleavage product, the bis-nitride, terminal-oxo complex, [K(2.2.2-cryptand)]2[{UV(OSi(OtBu)3)3}(μ-N)2{UVI(OSi(OtBu)3)2(κ-O)}], 4. We propose that the formation of these two products involves a tetranuclear uranium-N2 intermediate that can only form in the absence of coordinated alkali ions, resulting in a six-electron transfer and cleavage of N2, demonstrating the possibility of a three-electron transfer from U(iii) to N2. These results give an insight into the relationship between alkali ion binding modes, multimetallic cooperativity and reactivity, and demonstrate how these parameters can be tuned to cleave and functionalize N2.
Collapse
Affiliation(s)
- Nadir Jori
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Megan Keener
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées 31077 Toulouse Cedex 4 France
| | - Rosario Scopelliti
- X-Ray Diffraction and Surface Analytics Platform, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées 31077 Toulouse Cedex 4 France
| | - Marinella Mazzanti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
6
|
Kokubo Y, Tsuzuki K, Sugiura H, Yomura S, Wasada-Tsutsui Y, Ozawa T, Yanagisawa S, Kubo M, Takeyama T, Yamaguchi T, Shimazaki Y, Kugimiya S, Masuda H, Kajita Y. Syntheses, Characterizations, Crystal Structures, and Protonation Reactions of Dinitrogen Chromium Complexes Supported with Triamidoamine Ligands. Inorg Chem 2023; 62:5320-5333. [PMID: 36972224 DOI: 10.1021/acs.inorgchem.2c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
A novel dinitrogen-dichromium complex, [{Cr(LBn)}2(μ-N2)] (1), has been prepared from reaction of CrCl3 with a lithiated triamidoamine ligand (Li3LBn) under dinitrogen. The X-ray crystal structure analysis of 1 revealed that it is composed of two independent dimeric Cr complexes bridged by N2 in the unit cell. The bridged N-N bond lengths (1.188(4) and 1.185(7) Å) were longer than the free dinitrogen molecule. The elongations of N-N bonds in 1 were also supported by the fact that the ν(N-N) stretching vibration at 1772 cm-1 observed in toluene is smaller than the free N2. Complex 1 was identified to be a 5-coordinated high spin Cr(IV) complex by Cr K-edge XANES measurement. The 1H NMR spectrum and temperature dependent magnetic susceptibility of 1 indicated that complex 1 is in the S = 1 ground state, in which two Cr(IV) ions and unpaired electron spins of the bridging N22- ligand are strongly antiferromagnetically coupled. Reaction of complex 1 with 2.3 equiv of Na or K gave chromium complexes with N2 between the Cr ion and the respective alkali metal ion, [{CrNa(LBn)(N2)(Et2O)}2] (2) and [{CrK(LBn)(N2)}4(Et2O)2] (3), respectively. Furthermore, the complexes 2 and 3 reacted with 15-crown-5 and 18-crown-6 to form the respective crown-ether adducts, [CrNa(LBn)(N2)(15-crown-5)] (4) and [CrK(LBn)(N2)(18-crown-6)] (5). The XANES measurements of complexes 2, 3, 4, and 5 revealed that they are high spin Cr(IV) complexes like complex 1. All complexes reacted with a reducing agent and a proton source to form NH3 and/or N2H4. The yields of these products in the presence of K+ were higher than those in the presence of Na+. The electronic structures and binding properties of 1, 2, 3, 4, and 5 were evaluated and discussed based on their DFT calculations.
Collapse
|
7
|
Conversion of Glucose to 5-Hydroxymethylfurfural Using Consortium Catalyst in a Biphasic System and Mechanistic Insights. Catalysts 2023. [DOI: 10.3390/catal13030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
We found an effective catalytic consortium capable of converting glucose to 5-hydroxymethylfurfural (HMF) in high yields (50%). The reaction consists of a consortium of a Lewis acid (NbCl5) and a Brønsted acid (p-sulfonic acid calix[4]arene (CX4SO3H)), in a microwave-assisted reactor and in a biphasic system. The best result for the conversion of glucose to HMF (yield of 50%) was obtained with CX4SO3H/NbCl5 (5 wt%/7.5 wt%), using water/NaCl and MIBK (1:3), at 150 °C, for 17.5 min. The consortium catalyst recycling was tested, allowing its reuse for up to seven times, while maintaining the HMF yield constant. Additionally, it proposed a catalytic cycle by converting glucose to HMF, highlighting the following two key points: the isomerization of glucose into fructose, in the presence of Lewis acid (NbCl5), and the conversion of fructose into HMF, in the presence of CX4SO3H/NbCl5. A mechanism for the conversion of glucose to HMF was proposed and validated.
Collapse
|
8
|
Zhuo Q, Zhou X, Shima T, Hou Z. Dinitrogen Activation and Addition to Unsaturated C-E (E=C, N, O, S) Bonds Mediated by Transition Metal Complexes. Angew Chem Int Ed Engl 2023; 62:e202218606. [PMID: 36744517 DOI: 10.1002/anie.202218606] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Dinitrogen (N2 ) activation and functionalization is of fundamental interest and practical importance. This review focuses on N2 activation and addition to unsaturated substrates, including carbon monoxide, carbon dioxide, heteroallenes, aldehydes, ketones, acid halides, nitriles, alkynes, and allenes, mediated by transition metal complexes, which afforded a variety of N-C bond formation products. Emphases are placed on the reaction modes and mechanisms. We hope that this work would stimulate further explorations in this challenging field.
Collapse
Affiliation(s)
- Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoxi Zhou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanori Shima
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Suzuki N, Ishida Y, Kawaguchi H. Lewis Acid-Induced Dinitrogen Cleavage in an Anionic Side-on End-on Bound Dinitrogen Diniobium Hydride Complex. Molecules 2022; 27:molecules27175553. [PMID: 36080319 PMCID: PMC9457992 DOI: 10.3390/molecules27175553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
The side-on end-on dinitrogen hydride complex [{Na(dme)}2{(O3)Nb}2(μ-η1:η2-N2)(μ-H)2] (3-Na, [O3]3− = [(3,5-tBu2-2-O-C6H2)3CH]3−) was observed to undergo facile elimination of H2 and cleavage of the N–N bond in the presence of 9-borabicyclo[3.3.1]nonane (9-BBN), AlMe3, and ZnMe2. Treatment of 3-Na with 9-BBN and ZnMe2 afforded the nitride complex [{K(dme)2}2{(O3)Nb}2(μ-N)2] (2-Na). The reaction of 3-Na with AlMe3 afforded [{Na(dme)}2{(O3)AlMe}2(NbMe2)2(μ-N)2] (5). The nitride complex 2-Na was treated with 9-BBN and AlMe3 to form [{Na(dme)}2{(O3)Nb}(μ-NH)(μ-NBC8H14){Nb(O3C)}] (4) and 5, respectively. Complex 2-Na, 4, and 5 were structurally characterized.
Collapse
|
10
|
G Jafari M, Fehn D, Reinholdt A, Hernández-Prieto C, Patel P, Gau MR, Carroll PJ, Krzystek J, Liu C, Ozarowski A, Telser J, Delferro M, Meyer K, Mindiola DJ. Tale of Three Molecular Nitrides: Mononuclear Vanadium (V) and (IV) Nitrides As Well As a Mixed-Valence Trivanadium Nitride Having a V 3N 4 Double-Diamond Core. J Am Chem Soc 2022; 144:10201-10219. [PMID: 35652694 DOI: 10.1021/jacs.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transmetallation of [VCl3(THF)3] and [TlTptBu,Me] afforded [(TptBu,Me)VCl2] (1, TptBu,Me = hydro-tris(3-tert-butyl-5-methylpyrazol-1-yl)borate), which was reduced with KC8 to form a C3v symmetric VII complex, [(TptBu,Me)VCl] (2). Complex 1 has a high-spin (S = 1) ground state and displays rhombic high-frequency and -field electron paramagnetic resonance (HFEPR) spectra, while complex 2 has an S = 3/2 4A2 ground state observable by conventional EPR spectroscopy. Complex 1 reacts with NaN3 to form the VV nitride-azide complex [(TptBu,Me)V≡N(N3)] (3). A likely VIII azide intermediate en route to 3, [(TptBu,Me)VCl(N3)] (4), was isolated by reacting 1 with N3SiMe3. Complex 4 is thermally stable but reacts with NaN3 to form 3, implying a bis-azide intermediate, [(TptBu,Me)V(N3)2] (A), leading to 3. Reduction of 3 with KC8 furnishes a trinuclear and mixed-valent nitride, [{(TptBu,Me)V}2(μ4-VN4)] (5), conforming to a Robin-Day class I description. Complex 5 features a central vanadium ion supported only by bridging nitride ligands. Contrary to 1, complex 2 reacts with NaN3 to produce an azide-bridged dimer, [{(TptBu,Me)V}2(1,3-μ2-N3)2] (6), with two antiferromagnetically coupled high-spin VII ions. Complex 5 could be independently produced along with [(κ2-TptBu,Me)2V] upon photolysis of 6 in arene solvents. The putative {VIV≡N} intermediate, [(TptBu,Me)V≡N] (B), was intercepted by photolyzing 6 in a coordinating solvent, such as tetrahydrofuran (THF), yielding [(TptBu,Me)V≡N(THF)] (B-THF). In arene solvents, B-THF expels THF to afford 5 and [(κ2-TptBu,Me)2V]. A more stable adduct (B-OPPh3) was prepared by reacting B-THF with OPPh3. These adducts of B are the first neutral and mononuclear VIV nitride complexes to be isolated.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dominik Fehn
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cristina Hernández-Prieto
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Prajay Patel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Karsten Meyer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Park SV, Corcos AR, Jambor AN, Yang T, Berry JF. Formation of the N≡N Triple Bond from Reductive Coupling of a Paramagnetic Diruthenium Nitrido Compound. J Am Chem Soc 2022; 144:3259-3268. [PMID: 35133829 DOI: 10.1021/jacs.1c13396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Construction of nitrogen-nitrogen triple bonds via homocoupling of metal nitrides is an important fundamental reaction relevant to a potential Nitrogen Economy. Here, we report that room temperature photolysis of Ru2(chp)4N3 (chp- = 2-chloro-6-hydroxypyridinate) in CH2Cl2 produces N2 via reductive coupling of Ru2(chp)4N nitrido species. Computational analysis reveals that the nitride coupling transition state (TS) features an out-of-plane "zigzag" geometry instead of the anticipated planar zigzag TS. However, with intentional exclusion of dispersion correction, the planar zigzag TS geometry can also be found. Both the out-of-plane and planar zigzag TS geometries feature two important types of orbital interactions: (1) donor-acceptor interactions involving intermolecular donation of a nitride lone pair into an empty Ru-N π* orbital and (2) Ru-N π to Ru-N π* interactions derived from coupling of nitridyl radicals. The relative importance of these two interactions is quantified both at and after the TS. Our analysis shows that both interactions are important for the formation of the N-N σ bond, while radical coupling interactions dominate the formation of N-N π bonds. Comparison is made to isoelectronic Ru2-oxo compounds. Formation of an O-O bond via bimolecular oxo coupling is not observed experimentally and is calculated to have a much higher TS energy. The major difference between the nitrido and oxo systems stems from an extremely large driving force, ∼-500 kJ/mol, for N-N coupling vs a more modest driving force for O-O coupling, -40 to -140 kJ/mol.
Collapse
Affiliation(s)
- Sungho V Park
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Amanda R Corcos
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Alexander N Jambor
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tzuhsiung Yang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Jori N, Rajeshkumar T, Scopelliti R, Z̆ivković I, Sienkiewicz A, Maron L, Mazzanti M. Cation assisted binding and cleavage of dinitrogen by uranium complexes. Chem Sci 2022; 13:9232-9242. [PMID: 36093011 PMCID: PMC9384805 DOI: 10.1039/d2sc02530b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
N2 binding affinity decreases markedly in a series of isostructural U(iii)–alkali ions complexes with increasing cation size. N2 binding is undetectable in the Cs analogue, but the first example of cesium-assisted N2 cleavage to bis-nitride was observed at ambient condition.
Collapse
Affiliation(s)
- Nadir Jori
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, Cedex 4, 31077 Toulouse, France
| | - Rosario Scopelliti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ivica Z̆ivković
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- ADSresonances Sàrl, Route de Genève 60B, 1028 Préverenges, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, Cedex 4, 31077 Toulouse, France
| | - Marinella Mazzanti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
|
14
|
Meyer RL, Miró P, Brennessel WW, Matson EM. O 2 Activation with a Sterically Encumbered, Oxygen-Deficient Polyoxovanadate-Alkoxide Cluster. Inorg Chem 2021; 60:13833-13843. [PMID: 34161731 DOI: 10.1021/acs.inorgchem.1c00887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The isolation of the oxygen-deficient, polyoxovanadate-alkoxide (POV-alkoxide) cluster, [nBu4N][V6O6(OMe)12(MeCN)], and its subsequent reactivity with oxygen (O2), has demonstrated the utility of these assemblies as molecular models for heterogeneous metal oxide catalysts. However, the mechanism through which this cluster activates and reduces O2 to generate the oxygenated species is poorly understood. Currently it is speculated that this POV-alkoxide mediates the four-electron O-O bond cleavage through an O2 bridged dimeric intermediate, a mechanism which is not viable for O2 reduction at solid-state metal oxide surfaces. Here, we report the successful activation and reduction of O2 by the calix-functionalized POV-alkoxide cluster, [nBu4N][(calix)V6O6(OMe)8](MeCN)] (calix = 4-tert-butylcalix[4]arene). The steric hindrance imparted to the open vanadium site by the calix motif eliminates the possibility of cooperative, bimolecular O2 activation, allowing for a comparison of the reactivity of this system with that of the nonfunctionalized POV-alkoxide described previously. Rigorous characterization of the calix-substituted assembly, enabled by its newfound solubility in organic solvent, reveals that the incorporation of the tetradentate aryloxide ligand into the POV-alkoxide scaffold perturbs the electronic communication between the site-differentiated vanadium(III) ion and the cluster core. Collectively, our results provide insight into the physiochemical factors that are important during the O2 reduction reaction at oxygen-deficient sites in reduced POV-alkoxide clusters.
Collapse
Affiliation(s)
- Rachel L Meyer
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Pere Miró
- Department of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
15
|
Bae DY, Lee G, Lee E. Fixation of Dinitrogen at an Asymmetric Binuclear Titanium Complex. Inorg Chem 2021; 60:12813-12822. [PMID: 34492761 DOI: 10.1021/acs.inorgchem.1c01050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new type of dititanium dinitrogen complex supported by a triphenolamine (TPA) ligand is reported. Analysis by single-crystal X-ray diffraction and Raman and NMR spectroscopy reveals different coordination geometries for the two titanium centers. Hence, coordination of TPA and a nitrogen ligand results in trigonal-bipyramidal geometry, while an octahedral titanium center is obtained upon additional coordination of an ethoxide generated upon C-O bond cleavage in a diethyl ether solvent molecule. The titanium complex successfully generates ammonia in the presence of an excess amount of PCy3HI and KC8 in 154% yield (per titanium atom). A titanium complex with a bulkier TPA does not form a dinitrogen complex, and mononuclear titanium dinitrogen complexes were not accessible, presumably because of the high tendency of early transition metals to form binuclear dinitrogen complexes.
Collapse
Affiliation(s)
- Dae Young Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gunhee Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
16
|
Jori N, Barluzzi L, Douair I, Maron L, Fadaei-Tirani F, Z Ivković I, Mazzanti M. Stepwise Reduction of Dinitrogen by a Uranium-Potassium Complex Yielding a U(VI)/U(IV) Tetranitride Cluster. J Am Chem Soc 2021; 143:11225-11234. [PMID: 34269064 DOI: 10.1021/jacs.1c05389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multimetallic cooperativity is believed to play a key role in the cleavage of dinitrogen to nitrides (N3-), but the mechanism remains ambiguous due to the lack of isolated intermediates. Herein, we report the reduction of the complex [K2{[UV(OSi(OtBu)3)3]2(μ-O)(μ-η2:η2-N2)}], B, with KC8, yielding the tetranuclear tetranitride cluster [K6{(OSi(OtBu)3)2UIV}3{(OSi(OtBu)3)2UVI}(μ4-N)3(μ3-N)(μ3-O)2], 1, a novel example of N2 cleavage to nitride by a diuranium complex. The structure of complex 1 is remarkable, as it contains a unique uranium center bound by four nitrides and provides the second example of a trans-N═UVI═N core analogue of UO22+. Experimental and computational studies indicate that the formation of the U(IV)/U(VI) tetrauranium cluster occurs via successive one-electron transfers from potassium to the bound N24- ligand in complex B, resulting in N2 cleavage and the formation of the putative diuranium(V) bis-nitride [K4{[UV(OSi(OtBu)3)3]2(μ-O)(μ-N)2}], X. Additionally, cooperative potassium binding to the U-bound N24- ligand facilitates dinitrogen cleavage during electron transfer. The nucleophilic nitrides in both complexes are easily functionalized by protons to yield ammonia in 93-97% yield and with excess 13CO to yield K13CN and KN13CO. The structures of two tetranuclear U(IV)/U(V) bis- and mononitride clusters isolated from the reaction with CO demonstrate that the nitride moieties are replaced by oxides without disrupting the tetranuclear structure, but ultimately leading to valence redistribution.
Collapse
Affiliation(s)
- Nadir Jori
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Iskander Douair
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Toulouse, Cedex 4, France
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077 Toulouse, Cedex 4, France
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Ivica Z Ivković
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
17
|
Yamout LS, Ataya M, Hasanayn F, Holland PL, Miller AJM, Goldman AS. Understanding Terminal versus Bridging End-on N 2 Coordination in Transition Metal Complexes. J Am Chem Soc 2021; 143:9744-9757. [PMID: 34180663 DOI: 10.1021/jacs.1c01146] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Terminal and bridging end-on coordination of N2 to transition metal complexes offer possibilities for distinct pathways in ammonia synthesis and N2 functionalization. Here we elucidate the fundamental factors controlling the two binding modes and determining which is favored for a given metal-ligand system, using both quantitative density functional theory (DFT) and qualitative molecular orbital (MO) analyses. The Gibbs free energy for converting two terminal MN2 complexes into a bridging MNNM complex and a free N2 molecule (2ΔGeq°) is examined through systematic variations of the metal and ligands; values of ΔGeq° range between +9.1 and -24.0 kcal/mol per M-N2 bond. We propose a model that accounts for these broad variations by assigning a fixed π-bond order (BOπ) to the triatomic terminal MNN moiety that is equal to that of the free N2 molecule, and a variable BOπ to the bridging complexes based on the character (bonding or antibonding) and occupancy of the π-MOs in the tetratomic MNNM core. When the conversion from terminal to bridging coordination and free N2 is associated with an increase in the number of π-bonds (ΔBOeqπ > 0), the bridging mode is greatly favored; this condition is satisfied when each metal provides 1, 2, or 3 electrons to the π-MOs of the MNNM core. When each metal in the bridging complex provides 4 electrons to the MNNM π-MOs, ΔBOeqπ = 0; the equilibrium in this case is approximately ergoneutral and the direction can be shifted by dispersion interactions.
Collapse
Affiliation(s)
- Lynn S Yamout
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Mohamad Ataya
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alan S Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
18
|
Forrest SJK, Schluschaß B, Yuzik-Klimova EY, Schneider S. Nitrogen Fixation via Splitting into Nitrido Complexes. Chem Rev 2021; 121:6522-6587. [DOI: 10.1021/acs.chemrev.0c00958] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sebastian J. K. Forrest
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Bastian Schluschaß
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | | | - Sven Schneider
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| |
Collapse
|
19
|
Eaton MC, Catalano VJ, Shearer J, Murray LJ. Dinitrogen Insertion and Cleavage by a Metal-Metal Bonded Tricobalt(I) Cluster. J Am Chem Soc 2021; 143:5649-5653. [PMID: 33830763 DOI: 10.1021/jacs.1c01840] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Reduction of a tricobalt(II) tri(bromide) cluster supported by a tris(β-diketiminate) cyclophane results in halide loss, ligand compression, and metal-metal bond formation to yield a 48-electron CoI3 cluster, Co3LEt/Me (2). Upon reaction of 2 with dinitrogen, all metal-metal bonds are broken, steric conflicts are relaxed, and dinitrogen is incorporated within the internal cavity to yield a formally (μ3-η1:η2:η1-dinitrogen)tricobalt(I) complex, 3. Broken symmetry DFT calculations (PBE0/def2-tzvp/D3) support an N-N bond order of 2.1 in the bound N2 with the calculated N-N stretching frequency (1743 cm-1) comparable to the experimental value (1752 cm-1). Reduction of 3 under Ar in the presence of Me3SiBr results in N2 scission with tris(trimethylsilyl)amine afforded in good yield.
Collapse
Affiliation(s)
- Mary C Eaton
- Center for Catalysis and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Vincent J Catalano
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Leslie J Murray
- Center for Catalysis and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
20
|
Masero F, Perrin MA, Dey S, Mougel V. Dinitrogen Fixation: Rationalizing Strategies Utilizing Molecular Complexes. Chemistry 2021; 27:3892-3928. [PMID: 32914919 PMCID: PMC7986120 DOI: 10.1002/chem.202003134] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Dinitrogen (N2 ) is the most abundant gas in Earth's atmosphere, but its inertness hinders its use as a nitrogen source in the biosphere and in industry. Efficient catalysts are hence required to ov. ercome the high kinetic barriers associated to N2 transformation. In that respect, molecular complexes have demonstrated strong potential to mediate N2 functionalization reactions under mild conditions while providing a straightforward understanding of the reaction mechanisms. This Review emphasizes the strategies for N2 reduction and functionalization using molecular transition metal and actinide complexes according to their proposed reaction mechanisms, distinguishing complexes inducing cleavage of the N≡N bond before (dissociative mechanism) or concomitantly with functionalization (associative mechanism). We present here the main examples of stoichiometric and catalytic N2 functionalization reactions following these strategies.
Collapse
Affiliation(s)
- Fabio Masero
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Marie A. Perrin
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Subal Dey
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| | - Victor Mougel
- Department of Chemistry and Applied BiosciencesLaboratory of Inorganic ChemistryETH ZürichVladimir Prelog Weg 1–58093ZürichSwitzerland
| |
Collapse
|
21
|
Fantuzzi F, Nascimento MAC, Ginovska B, Bullock RM, Raugei S. Splitting of multiple hydrogen molecules by bioinspired diniobium metal complexes: a DFT study. Dalton Trans 2021; 50:840-849. [PMID: 33237062 DOI: 10.1039/d0dt03411h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Splitting of molecular hydrogen (H2) into bridging and terminal hydrides is a common step in transition metal chemistry. Herein, we propose a novel organometallic platform for cleavage of multiple H2 molecules, which combines metal centers capable of stabilizing multiple oxidation states, and ligands bearing positioned pendant basic groups. Using quantum chemical modeling, we show that low-valent, early transition metal diniobium(ii) complexes with diphosphine ligands featuring pendant amines can favorably uptake up to 8 hydrogen atoms, and that the energetics are favored by the formation of intramolecular dihydrogen bonds. This result suggests new possible strategies for the development of hydrogen scavenger molecules that are able to perform reversible splitting of multiple H2 molecules.
Collapse
Affiliation(s)
- Felipe Fantuzzi
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, 21941.909, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
22
|
Bruch QJ, Connor GP, McMillion ND, Goldman AS, Hasanayn F, Holland PL, Miller AJM. Considering Electrocatalytic Ammonia Synthesis via Bimetallic Dinitrogen Cleavage. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02606] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Quinton J. Bruch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Gannon P. Connor
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Noah D. McMillion
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Alan S. Goldman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08903, United States
| | - Faraj Hasanayn
- Department of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Patrick L. Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alexander J. M. Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
23
|
Suzuki S, Ishida Y, Kameo H, Sakaki S, Kawaguchi H. Counterion Dependence of Dinitrogen Activation and Functionalization by a Diniobium Hydride Anion. Angew Chem Int Ed Engl 2020; 59:13444-13450. [PMID: 32352196 DOI: 10.1002/anie.202006039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 01/10/2023]
Abstract
We report the synthesis of anionic diniobium hydride complexes with a series of alkali metal cations (Li+ , Na+ , and K+ ) and the counterion dependence of their reactivity with N2 . Exposure of these complexes to N2 initially produces the corresponding side-on end-on N2 complexes, the fate of which depends on the nature of countercations. The lithium derivative undergoes stepwise migratory insertion of the hydride ligands onto the aryloxide units, yielding the end-on bridging N2 complex. For the potassium derivative, the N-N bond cleavage takes place along with H2 elimination to form the nitride complex. Treatment of the side-on end-on N2 complex with Me3 SiCl results in silylation of the terminal N atom and subsequent N-N bond cleavage along with H2 elimination, giving the nitride-imide-bridged diniobium complex.
Collapse
Affiliation(s)
- Shoi Suzuki
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Yutaka Ishida
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Hajime Kameo
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, 599-8531, Sakai, Osaka, Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-nishihiraki-cho 34-4, Sakyo-ku, Kyoto, 606-8103, Japan
| | - Hiroyuki Kawaguchi
- Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
24
|
Suzuki S, Ishida Y, Kameo H, Sakaki S, Kawaguchi H. Counterion Dependence of Dinitrogen Activation and Functionalization by a Diniobium Hydride Anion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shoi Suzuki
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Yutaka Ishida
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Hajime Kameo
- Department of Chemistry Graduate School of Science Osaka Prefecture University Gakuen-cho 1-1, Naka-ku 599-8531 Sakai Osaka Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry Kyoto University Takano-nishihiraki-cho 34-4, Sakyo-ku Kyoto 606-8103 Japan
| | - Hiroyuki Kawaguchi
- Department of Chemistry Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
25
|
Abstract
Activation of dinitrogen plays an important role in daily anthropogenic life, and the processes by which this fixation occurs have been a longstanding and significant research focus within the community. One of the major fields of dinitrogen activation research is the use of multimetallic compounds to reduce and/or activate N2 into a more useful nitrogen-atom source, such as ammonia. Here we report a comprehensive review of multimetallic-dinitrogen complexes and their utility toward N2 activation, beginning with the d-block metals from Group 4 to Group 11, then extending to Group 13 (which is exclusively populated by B complexes), and finally the rare-earth and actinide species. The review considers all polynuclear metal aggregates containing two or more metal centers in which dinitrogen is coordinated or activated (i.e., partial or complete cleavage of the N2 triple bond in the observed product). Our survey includes complexes in which mononuclear N2 complexes are used as building blocks to generate homo- or heteromultimetallic dinitrogen species, which allow one to evaluate the potential of heterometallic species for dinitrogen activation. We highlight some of the common trends throughout the periodic table, such as the differences between coordination modes as it relates to N2 activation and potential functionalization and the effect of polarizing the bridging N2 ligand by employing different metal ions of differing Lewis acidities. By providing this comprehensive treatment of polynuclear metal dinitrogen species, this Review aims to outline the past and provide potential future directions for continued research in this area.
Collapse
Affiliation(s)
- Devender Singh
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - William R. Buratto
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Juan F. Torres
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| | - Leslie J. Murray
- Center for Catalysis, and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
26
|
Lv ZJ, Wei J, Zhang WX, Chen P, Deng D, Shi ZJ, Xi Z. Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N−C bond formation. Natl Sci Rev 2020; 7:1564-1583. [PMID: 34691489 PMCID: PMC8288816 DOI: 10.1093/nsr/nwaa142] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 01/08/2023] Open
Abstract
N-containing organic compounds are of vital importance to lives. Practical synthesis of valuable N-containing organic compounds directly from dinitrogen (N2), not through ammonia (NH3), is a holy-grail in chemistry and chemical industry. An essential step for this transformation is the functionalization of the activated N2 units/ligands to generate N−C bonds. Pioneering works of transition metal-mediated direct conversion of N2 into organic compounds via N−C bond formation at metal-dinitrogen [N2-M] complexes have generated diversified coordination modes and laid the foundation of understanding for the N−C bond formation mechanism. This review summarizes those major achievements and is organized by the coordination modes of the [N2-M] complexes (end-on, side-on, end-on-side-on, etc.) that are involved in the N−C bond formation steps, and each part is arranged in terms of reaction types (N-alkylation, N-acylation, cycloaddition, insertion, etc.) between [N2-M] complexes and carbon-based substrates. Additionally, earlier works on one-pot synthesis of organic compounds from N2 via ill-defined intermediates are also briefed. Although almost all of the syntheses of N-containing organic compounds via direct transformation of N2 so far in the literature are realized in homogeneous stoichiometric thermochemical reaction systems and are discussed here in detail, the sporadically reported syntheses involving photochemical, electrochemical, heterogeneous thermo-catalytic reactions, if any, are also mentioned. This review aims to provide readers with an in-depth understanding of the state-of-the-art and perspectives of future research particularly in direct catalytic and efficient conversion of N2 into N-containing organic compounds under mild conditions, and to stimulate more research efforts to tackle this long-standing and grand scientific challenge.
Collapse
Affiliation(s)
- Ze-Jie Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dehui Deng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
27
|
Kim S, Loose F, Chirik PJ. Beyond Ammonia: Nitrogen–Element Bond Forming Reactions with Coordinated Dinitrogen. Chem Rev 2020; 120:5637-5681. [DOI: 10.1021/acs.chemrev.9b00705] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sangmin Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Florian Loose
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
28
|
Shima T, Yang J, Luo G, Luo Y, Hou Z. Dinitrogen Activation and Hydrogenation by C5Me4SiMe3-Ligated Di- and Trinuclear Chromium Hydride Complexes. J Am Chem Soc 2020; 142:9007-9016. [DOI: 10.1021/jacs.0c02939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Takanori Shima
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jimin Yang
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Gen Luo
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
| |
Collapse
|
29
|
Shima T, Luo G, Hu S, Luo Y, Hou Z. Experimental and Computational Studies of Dinitrogen Activation and Hydrogenation at a Tetranuclear Titanium Imide/Hydride Framework. J Am Chem Soc 2019; 141:2713-2720. [DOI: 10.1021/jacs.8b13341] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Takanori Shima
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gen Luo
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shaowei Hu
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Luo
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
30
|
Bregante DT, Thornburg NE, Notestein JM, Flaherty DW. Consequences of Confinement for Alkene Epoxidation with Hydrogen Peroxide on Highly Dispersed Group 4 and 5 Metal Oxide Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03986] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel T. Bregante
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Nicholas E. Thornburg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - David W. Flaherty
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Arikawa Y, Otsubo Y, Fujino H, Horiuchi S, Sakuda E, Umakoshi K. Nitrite Reduction Cycle on a Dinuclear Ruthenium Complex Producing Ammonia. J Am Chem Soc 2018; 140:842-847. [PMID: 29257867 DOI: 10.1021/jacs.7b12020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fundamental biogeochemical cycle of nitrogen includes cytochrome c nitrite reductase, which catalyzes the reduction of nitrite ions to ammonium with eight protons and six electrons (NO2- + 8H+ + 6e- → NH4+ + 2H2O). This reaction has motivated researchers to explore the reduction of nitrite. Although a number of electrochemical reductions of NO2- have been reported, the synthetic nitrite reduction reaction remains limited. To the best of our knowledge, formation of ammonia has not been reported. We report a three-step nitrite reduction cycle on a dinuclear ruthenium platform {(TpRu)2(μ-pz)} (Tp = HB(pyrazol-1-yl)3), producing ammonia. The cycle comprises conversion of a nitrito ligand to a NO ligand using 2H+ and e-, subsequent reduction of the NO ligand to a nitrido and a H2O ligand by consumption of 2H+ and 5e-, and recovery of the parent nitrito ligand. Moreover, release of ammonia was detected.
Collapse
Affiliation(s)
- Yasuhiro Arikawa
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University , Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Yuji Otsubo
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University , Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Hiroki Fujino
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University , Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Shinnosuke Horiuchi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University , Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Eri Sakuda
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University , Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Keisuke Umakoshi
- Division of Chemistry and Materials Science, Graduate School of Engineering, Nagasaki University , Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
32
|
Pappuru S, Chakraborty D, Ramkumar V. Nb and Ta benzotriazole or benzoxazole phenoxide complexes as catalysts for the ring-opening polymerization of glycidol to synthesize hyperbranched polyglycerols. Dalton Trans 2017; 46:16640-16654. [PMID: 29168518 DOI: 10.1039/c7dt02839c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel mononuclear (1a-7a and 1b-6b) as well as tetranuclear (8a and 9a) niobium (Nb) and tantalum (Ta) complexes of benzotriazole or benzoxazole phenoxide pro-ligands bearing different substituents at the ortho and para positions of the phenol rings were synthesized and characterized. The reaction of NbCl5 or TaCl5 with one equivalent of benzotriazole or benzoxazole phenoxide pro-ligands (L1H-L6H) in dry toluene or chloroform produced the corresponding chloride (1a-6a and 1b-6b) and ethoxy (7a) mononuclear Nb and Ta complexes in high yields. Furthermore, from the mononuclear Nb complexes (1a or 4a), a new structural form of tetrameric niobium complexes (8a and 9a) was synthesized through a controlled hydrolysis reaction. The molecular structures of complexes 1b, 4b, 7a, 8a and 9a were unambiguously confirmed by single crystal X-ray diffraction analyses. Furthermore, all these complexes (1a-9a and 1b-6b) were tested as catalysts for the ring-opening polymerisation (ROP) of glycidol to synthesize hyperbranched polyglycerols (HPG) by using 1,1,1-tris(hydroxymethyl)propane (TMP) as an initiator. The degree of branching (DB) observed was 0.30-0.54, which is an indication of hyperbranched structures. In particular, for the niobium complex with electron-withdrawing substituents on the benzoxazole phenoxide pro-ligand (5a), we achieved superior behavior for the ROP of glycidol in terms of activity, control of molecular weight (Mn) and molecular weight distributions (MWDs) (92% of glycidol to HPG, Mn = 10.52 kg mol-1, MWDs <1.33, DB = 0.53 and Tg = -57 °C). A highly hydrophilic nature was observed for the synthesized HPG polymer by water contact angle measurement (20° to 35°).
Collapse
Affiliation(s)
- Sreenath Pappuru
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Debashis Chakraborty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Venkatachalam Ramkumar
- Single Crystal XRD Lab, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
33
|
Nakanishi Y, Ishida Y, Kawaguchi H. Nitrogen-Carbon Bond Formation by Reactions of a Titanium-Potassium Dinitrogen Complex with Carbon Dioxide, tert
-Butyl Isocyanate, and Phenylallene. Angew Chem Int Ed Engl 2017; 56:9193-9197. [DOI: 10.1002/anie.201704286] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Yusuke Nakanishi
- Department of Chemistry; Tokyo Institute of Technology; Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Yutaka Ishida
- Department of Chemistry; Tokyo Institute of Technology; Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Hiroyuki Kawaguchi
- Department of Chemistry; Tokyo Institute of Technology; Ookayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
34
|
Nakanishi Y, Ishida Y, Kawaguchi H. Nitrogen-Carbon Bond Formation by Reactions of a Titanium-Potassium Dinitrogen Complex with Carbon Dioxide, tert
-Butyl Isocyanate, and Phenylallene. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yusuke Nakanishi
- Department of Chemistry; Tokyo Institute of Technology; Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Yutaka Ishida
- Department of Chemistry; Tokyo Institute of Technology; Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Hiroyuki Kawaguchi
- Department of Chemistry; Tokyo Institute of Technology; Ookayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
35
|
Connor GP, Holland PL. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction. Catal Today 2017; 286:21-40. [PMID: 28344387 PMCID: PMC5363757 DOI: 10.1016/j.cattod.2016.08.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Haber-Bosch process is a major contributor to fixed nitrogen that supports the world's nutritional needs and is one of the largest-scale industrial processes known. It has also served as a testing ground for chemists' understanding of surface chemistry. Thus, it is significant that the most thoroughly developed catalysts for N2 reduction use potassium as an electronic promoter. In this review, we discuss the literature on alkali metal cations as promoters for N2 reduction, in the context of the growing knowledge about cooperative interactions between N2, transition metals, and alkali metals in coordination compounds. Because the structures and properties are easier to characterize in these compounds, they give useful information on alkali metal interactions with N2. Here, we review a variety of interactions, with emphasis on recent work on iron complexes by the authors. Finally, we draw conclusions about the nature of these interactions and areas for future research.
Collapse
Affiliation(s)
- Gannon P. Connor
- Department of Chemistry, Yale University, New Haven, CT 06511 USA
| | | |
Collapse
|
36
|
Vilarrubias P. Large pi-systems containing W–N=N–W groups. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The compound Cl–W(Mes)3–N=N–W(Mes)3–Cl can polymerize, giving large inorganic pi systems containing N2 and W(Mes)3, where Mes = mesityl. Some of these compounds have been studied in the present paper using B3LYP functional. A description of the molecular orbitals from the pi system is given, explaining the role of the mesityl groups, the terminal chlorines, and the d atomic orbitals from W in the whole conjugated system. Other data such as bond order, atomic partial charges, or geometry are studied. These compounds are also compared with some hypothetical derivatives.
Collapse
Affiliation(s)
- Pere Vilarrubias
- Generalitat de Catalunya, Department d’Ensenyament, IES Castelló d’Empuries, Carrer Rentadors 6, Castelló d’Empuries, 17486, Girona, Spain
- Generalitat de Catalunya, Department d’Ensenyament, IES Castelló d’Empuries, Carrer Rentadors 6, Castelló d’Empuries, 17486, Girona, Spain
| |
Collapse
|
37
|
|
38
|
Guru MM, Shima T, Hou Z. Conversion of Dinitrogen to Nitriles at a Multinuclear Titanium Framework. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Murali Mohan Guru
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Takanori Shima
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| |
Collapse
|
39
|
Guru MM, Shima T, Hou Z. Conversion of Dinitrogen to Nitriles at a Multinuclear Titanium Framework. Angew Chem Int Ed Engl 2016; 55:12316-20. [DOI: 10.1002/anie.201607426] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Murali Mohan Guru
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Takanori Shima
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group; RIKEN, Center for Sustainable Resource Science; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory; RIKEN; 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| |
Collapse
|
40
|
Camp C, Grant LN, Bergman RG, Arnold J. Photo-activation of d(0) niobium imido azides: en route to nitrido complexes. Chem Commun (Camb) 2016; 52:5538-41. [PMID: 27033145 DOI: 10.1039/c6cc02081j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and photo-reactivity of d(0) niobium imido azido complexes supported by β-diketiminate ligands, which leads to the unprecedented formation of nitrides through a photo-assisted intramolecular rearrangement. This provides a new entry to metal nitrides that does not require low-valent metal centers and is a rare example in which the metal-imido moiety in group 5 complexes participates in reactivity.
Collapse
Affiliation(s)
- Clément Camp
- C2P2 UMR 5265 CNRS, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Lauren N Grant
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
41
|
Thornburg NE, Nauert SL, Thompson AB, Notestein JM. Synthesis−Structure–Function Relationships of Silica-Supported Niobium(V) Catalysts for Alkene Epoxidation with H2O2. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01796] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholas E. Thornburg
- Department of Chemical and
Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Scott L. Nauert
- Department of Chemical and
Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Anthony B. Thompson
- Department of Chemical and
Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Justin M. Notestein
- Department of Chemical and
Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| |
Collapse
|
42
|
Tanabe Y, Nishibayashi Y. Catalytic Dinitrogen Fixation to Form Ammonia at Ambient Reaction Conditions Using Transition Metal-Dinitrogen Complexes. CHEM REC 2016; 16:1549-77. [DOI: 10.1002/tcr.201600025] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Yoshiaki Tanabe
- Department of Systems Innovation, School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering; The University of Tokyo; Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
43
|
|
44
|
McWilliams SF, Rodgers KR, Lukat-Rodgers G, Mercado BQ, Grubel K, Holland PL. Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes. Inorg Chem 2016; 55:2960-8. [PMID: 26925968 PMCID: PMC4856002 DOI: 10.1021/acs.inorgchem.5b02841] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 11/28/2022]
Abstract
Alkali metal cations can interact with Fe-N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber-Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal-dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na(+) to K(+), Rb(+), and Cs(+). The FeNNFe cores have similar Fe-N and N-N distances and N-N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies.
Collapse
Affiliation(s)
- Sean F. McWilliams
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Gudrun Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Katarzyna Grubel
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
45
|
Application of 93Nb NMR spectroscopy to (silox)3Nb(Xn/Lm) complexes (silox =tBu3SiO): Where does (silox)3Nb(NN)Nb(silox)3 appear? Polyhedron 2016. [DOI: 10.1016/j.poly.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Walter M. Recent Advances in Transition Metal-Catalyzed Dinitrogen Activation. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2016. [DOI: 10.1016/bs.adomc.2016.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
47
|
Ryan JD, Gagnon KJ, Teat SJ, McIntosh RD. Flexible macrocycles as versatile supports for catalytically active metal clusters. Chem Commun (Camb) 2016; 52:9071-3. [DOI: 10.1039/c6cc00478d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present three structurally diverse clusters stabilised by the same macrocyclic polyphenol; t-butylcalix[8]arene.
Collapse
Affiliation(s)
- Jason D. Ryan
- Institute of Chemical Sciences
- Heriot-Watt University
- Riccarton
- UK
| | | | | | | |
Collapse
|
48
|
Thornburg NE, Thompson AB, Notestein JM. Periodic Trends in Highly Dispersed Groups IV and V Supported Metal Oxide Catalysts for Alkene Epoxidation with H2O2. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01105] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nicholas E. Thornburg
- Department of Chemical and
Biological Engineering, Technological Institute E136, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anthony B. Thompson
- Department of Chemical and
Biological Engineering, Technological Institute E136, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M. Notestein
- Department of Chemical and
Biological Engineering, Technological Institute E136, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
49
|
Morris RS, Lavoie GG. Strong π-interactions between tantalum and apical ligands in square pyramidal complexes supported by a rigid tetradentate spectator ligand. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Peigné B, Aullón G. Structural analysis of the coordination of dinitrogen to transition metal complexes. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2015; 71:369-386. [PMID: 26027013 DOI: 10.1107/s2052520615006083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
Transition-metal complexes show a wide variety of coordination modes for the nitrogen molecule. A structural database study has been undertaken for dinitrogen complexes, and geometrical parameters around the L(n)M-N2 unit are retrieved from the Cambridge Structural Database. These data were classified in families of compounds, according to metal properties, to determine the degree of lengthening for the dinitrogen bonding. The importance of the nature of the metal center, such as coordination number and electronic configuration, is reported. Our study reveals poor activation by coordination of dinitrogen in mononuclear complexes, always having end-on coordination. However, partial weakening of nitrogen-nitrogen bonding is found for end-on binuclear complexes, whereas side-on complexes can be completely activated.
Collapse
Affiliation(s)
- Benjamin Peigné
- Departament de Química Inorgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Gabriel Aullón
- Departament de Química Inorgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|