1
|
Dai CM, Xu J, Xu X, Wang C, You T, Li W, Jian J. Spectroscopic Characterization of the 1-Boratricyclo-[4.1.0.0 2,7]-heptane Radical with a Delocalized Four-Center-One-Electron Bond. JACS AU 2024; 4:3183-3193. [PMID: 39211611 PMCID: PMC11350594 DOI: 10.1021/jacsau.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The boron atom is a highly electrophilic reagent due to the presence of its empty p orbital, making it prone to undergo electrophilic addition reactions with the carbon-carbon double bonds of olefins. In this study, the classical C=C reaction pathway occurs when a boron atom attacks the C=C bond of cyclohexene, resulting in the formation of the η2 (1,2)-BC6H10 complex (A) that contains a borirane radical subunit. This complex can further undergo photoisomerization, leading to the formation of a 3,4,5,6-tetrahydroborepine radical (C) through the cleavage of C-C bonds. In addition, two 1-boratricyclo[4.1.0.02,7]heptane radicals with chair (B) and boat (B') conformations were observed through α C-H cleavage reactions. Bonding analysis indicates that these radicals involve a four-center-one-electron (4c-1e) bond. Under UV light irradiation, these two radicals undergo ring-opening and rearrangement reactions, resulting in the formation of a 1-cyclohexen-1-yl-borane radical (D), which is a sp2 C-H activation product. These findings delineate a potential pathway for the synthesis of organoboron radicals through boron-mediated C-H and C-C bond cleavage reactions in cycloolefins.
Collapse
Affiliation(s)
- Chuan-Ming Dai
- Hangzhou
Institute of Advanced Studies, Zhejiang
Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, People’s Republic of China
| | - Jiaping Xu
- Hangzhou
Institute of Advanced Studies, Zhejiang
Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, People’s Republic of China
| | - Xin Xu
- Hangzhou
Institute of Advanced Studies, Zhejiang
Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, People’s Republic of China
| | - Cong Wang
- Hangzhou
Institute of Advanced Studies, Zhejiang
Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, People’s Republic of China
| | - Tao You
- Hangzhou
Institute of Advanced Studies, Zhejiang
Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, People’s Republic of China
| | - Wei Li
- School
of Mathematics and Physics, North China
Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, People’s
Republic of China
| | - Jiwen Jian
- Hangzhou
Institute of Advanced Studies, Zhejiang
Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, People’s Republic of China
| |
Collapse
|
2
|
Zhang FX, Wang M, Ma JB. Conversion of Carbon Dioxide into a Series of CB xO y- Compounds Mediated by LaB 3,4O 2- Anions: Synergy of the Electron Transfer and Lewis Pair Mechanisms to Construct B-C Bonds. Inorg Chem 2024; 63:14206-14215. [PMID: 39012836 DOI: 10.1021/acs.inorgchem.4c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Converting CO2 into value-added products containing B-C bonds is a great challenge, especially for multiple B-C bonds, which are versatile building blocks for organoborane chemistry. In the condensed phase, the B-C bond is typically formed through transition metal-catalyzed direct borylation of hydrocarbons via C-H bond activation or transition metal-catalyzed insertion of carbenes into B-H bonds. However, excessive amounts of powerful boryl reagents are required, and products containing B-C bonds are complex. Herein, a novel method to construct multiple B-C bonds at room temperature is proposed by the gas-phase reactions of CO2 with LaBmOn- (m = 1-4, n = 1 or 2). Mass spectrometry and density functional theory calculations are applied to investigate these reactions, and a series of new compounds, CB2O2-, CB3O3-, and CB3O2-, which possess B-C bonds, are generated in the reactions of LaB3,4O2- with CO2. When the number of B atoms in the clusters is reduced to 2 or 1, there is only CO-releasing channel, and no CBxOy- compounds are released. Two major factors are responsible for this quite intriguing reactivity: (1) Synergy of electron transfer and boron-boron Lewis acid-base pair mechanisms facilitates the rupture of C═O double bond in CO2. (2) The boron sites in the clusters can efficiently capture the newly formed CO units in the course of reactions, favoring the formation of B-C bonds. This finding may provide fundamental insights into the CO2 transformation driven by clusters containing lanthanide atoms and how to efficiently build B-C bonds under room temperature.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
3
|
Xu X, Zhu YK, Dai CM, Xu J, Jian J. Synthesis and characterization of azaborepin radicals in solid neon through boron-mediated C-N bond cleavage of pyridine. Phys Chem Chem Phys 2024; 26:11048-11055. [PMID: 38528841 DOI: 10.1039/d4cp00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The reactivity of pyridine is a complex topic due to its unique electronic structure. The reactions of atomic boron with pyridine molecules in solid neon have been investigated using matrix isolation infrared absorption spectroscopy. Three products (marked as A, B, and C) were observed and characterized through 10B, D and 15N isotopic substitution pyridine regents as well as quantum chemical calculations. In the reaction, the ground-state boron atom can attack the lone pair electrons of the nitrogen atom in the pyridine molecule, resulting in the formation of a 1-boropyridinyl radical (A). Alternatively, addition to the aromatic π-system of pyridine can occur in a [1,4] type, leading to the formation of a B[η2(1,4)-C5H5N] complex (B). Under UV-visible light (280 < λ < 580 nm) irradiation, these two compounds can further undergo photo-isomerization to form BN-embedded seven-membered azaborepin compounds (C). The observation of species A, B, and the subsequent photo-isomerization to species C is consistent with theoretical predictions, indicating that these reactions are kinetically favorable. This research provides valuable insights into the future design and synthesis of corresponding BN heterocyclic derivatives.
Collapse
Affiliation(s)
- Xin Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Yi-Kang Zhu
- Xiaoshan Campus, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
| | - Chuan-Ming Dai
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Jiaping Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
| | - Jiwen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China.
- Xiaoshan Campus, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang, 311231, China
| |
Collapse
|
4
|
Xu J, Dai CM, Xu X, Jian J. Structural and spectroscopic characterization of large boron heterocyclic radicals: Matrix infrared spectroscopy and quantum chemical calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123539. [PMID: 37857070 DOI: 10.1016/j.saa.2023.123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Six boron heterocyclic radicals with different conformations or configurations were synthesized in solid neon and identified by matrix isolation infrared spectroscopy as well as quantum-chemical calculations. The ground-state boron atom selectively attacks the C = C bond of cycloheptene forming η2 (1,2)-BC7H12 complex (A), which contains a chair conformation and a boat conformation. Species A isomerizes to the 2,3,4,5,6,7-hexahydroborocine radical (B), which involves an eight-membered boron heterocyclic ring and also has two isomers observed. The 1-(prop-1-en-1-yl)-2,3,4-dihydro borole radical (C) with E-configuration and Z-configuration is generated as the final product under UV light irradiation through ring contraction reaction and the hydrogen atom transfer reaction. The observation of species A and further photo-isomerization to species C is consistent with theoretical predictions that these reactions are thermodynamically exothermic and kinetically facile. This work not only provides a possible route for future design and synthesis of corresponding borole derivatives, but also provides new insights into the structural and spectroscopic information of boron heterocyclic radicals with different conformations and configurations.
Collapse
Affiliation(s)
- Jiaping Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, China
| | - Chuan-Ming Dai
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, China
| | - Xin Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, China
| | - Jiwen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, Zhejiang 311231, China.
| |
Collapse
|
5
|
Deng G, Medel R, Lu Y, Riedel S. Photoinduced Dual C-F Bond Activation of Hexafluorobenzene Mediated by Boron Atom. Chemistry 2024:e202303874. [PMID: 38193267 DOI: 10.1002/chem.202303874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
The reaction of laser-ablated boron atoms with hexafluorobenzene (C6 F6 ) was investigated in neon and argon matrices, and the products are identified by matrix isolation infrared spectroscopy and quantum-chemical calculations. The reaction is triggered by a boron atom insertion into one C-F bond of hexafluorobenzene on annealing, forming a fluoropentafluorophenyl boryl radical (A). UV-Vis light irradiation of fluoropentafluorophenyl boryl radical causes generation of a 2-difluoroboryl-tetrafluorophenyl radical (B) via a second C-F bond activation. A perfluoroborepinyl radical (C) is also observed upon deposition and under UV-Vis light irradiation. This finding reveals the new example of a dual C-F bond activation of hexafluorobenzene mediated by a nonmetal and provides a possible route for synthesis of new perfluorinated organo-boron compounds.
Collapse
Affiliation(s)
- Guohai Deng
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Robert Medel
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Yan Lu
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| | - Sebastian Riedel
- Freie Universität Berlin, Institut für Chemie und Biochemie-Anorganische Chemie, Fabeckstrasse 34/36, 14195, Berlin, Germany
| |
Collapse
|
6
|
Kuroki K, Ito T, Takaya J. Reversible Boron-Insertion into Aromatic C-C Bonds. Angew Chem Int Ed Engl 2023; 62:e202312980. [PMID: 37735101 DOI: 10.1002/anie.202312980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Formation of borabicyclo[3.2.0]heptadiene derivatives was achieved via boron-insertion into aromatic C-C bonds in the photo-promoted skeletal rearrangement reaction of triarylboranes bearing an ortho-phosphino substituent (ambiphilic phosphine-boranes). The borabicyclo[3.2.0]heptadiene derivatives were fully characterized by NMR and X-ray analyses. The dearomatized products were demonstrated to undergo the reverse reaction in the dark at room temperature, realizing photochemical and thermal interconversion between triarylboranes and boron-doped bicyclic systems. Experimental and theoretical studies revealed that sequential two electrocyclic reactions involving E/Z-isomerization of an alkene moiety proceed via a highly strained trans-borepin intermediate.
Collapse
Affiliation(s)
- Kaito Kuroki
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tatsuyoshi Ito
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Jun Takaya
- Department of Chemistry, School of Science, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
7
|
Guo YY, Tian ZH, Ma C, Han YC, Bai D, Jiang Z. Unlocking mild-condition benzene ring contraction using nonheme diiron N-oxygenase. Chem Sci 2023; 14:11907-11913. [PMID: 37920353 PMCID: PMC10619644 DOI: 10.1039/d3sc04660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Benzene ring contractions are useful yet rare reactions that offer a convenient synthetic route to various valuable chemicals. However, the traditional methods of benzene contraction rely on noble-metal catalysts under extreme conditions with poor efficiency and uncontrollable selectivity. Mild-condition contractions of the benzene ring are rarely reported. This study presents a one-step, one-pot benzene ring contraction reaction mediated by an engineered nonheme diiron N-oxygenase. Using various aniline substrates as amine sources, the enzyme causes the phloroglucinol-benzene-ring contraction to afford a series of 4-cyclopentene-1,3-dione structures. A reaction detail study reveals that the nonheme diiron N-oxygenase first oxidizes the aromatic amine to a nitroso intermediate, which then attacks the phloroglucinol anion and causes benzene ring contraction. Besides, we have identified two potent antitumor compounds from the ring-contracted products.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Ze-Hua Tian
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - ChunHua Ma
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Yu-Chen Han
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - DaChang Bai
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - ZhiYong Jiang
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
8
|
Xu J, Xu X, Li D, Xie BB, Jian J. Photoinduced boron atom insertion of benzocyclobutene forming an unprecedented fused boron heterocyclic radical. Chem Commun (Camb) 2023; 59:1529-1532. [PMID: 36661048 DOI: 10.1039/d2cc06566e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two novel boron heterocyclic radicals, an addition bicyclo[4.2.1]octa-1,3,5-trien-1-yl-borane radical (A) and an insertion 7-1H-borolo[1,2-a]borinine radical (B), were synthesized, and characterized in the reaction of atomic boron with benzocyclobutene. Species B involving a fused boron heterocyclic was spectroscopically characterized for the first time. This work is a new approach for boron-mediated molecular editing and the synthesis of fused boron heterocyclic compounds.
Collapse
Affiliation(s)
- Jiaping Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Xin Xu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Danyang Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| | - Jiwen Jian
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China.
| |
Collapse
|
9
|
Wang L, Li X, Jiang X, Zeng X, Zhou M. Spectroscopic Identification of the Heterocumulenic Isocyanatoborane Radical HBNCO. J Phys Chem Lett 2022; 13:2619-2624. [PMID: 35294206 DOI: 10.1021/acs.jpclett.2c00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The highly elusive isocyanatoborane radical HBNCO has been generated by the reaction of laser-ablated boron atoms with HNCO and also by the light-induced chemical transformation of the hydrogen-bonded molecule-radical complex BNH···CO in solid neon matrix. IR spectroscopic and theoretical studies indicate that the HBNCO radical possesses a quasilinear B═N═C═O heterocumulenic structure with the unpaired electron mainly located at the boron atom. This is in sharp contrast to the bonding properties of the isoelectronic analogues HCCCO and NCCO, in which the unpaired electron is located at the terminal CO moiety.
Collapse
Affiliation(s)
- Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xiaolong Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xin Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Liu G, Ariyarathna IR, Zhu Z, Ciborowski SM, Miliordos E, Bowen KH. Molecular-level electrocatalytic CO 2 reduction reaction mediated by single platinum atoms. Phys Chem Chem Phys 2022; 24:4226-4231. [PMID: 35132978 DOI: 10.1039/d1cp05189j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The activation and transformation of H2O and CO2 mediated by electrons and single Pt atoms is demonstrated at the molecular level. The reaction mechanism is revealed by the synergy of mass spectrometry, photoelectron spectroscopy, and quantum chemical calculations. Specifically, a Pt atom captures an electron and activates H2O to form a H-Pt-OH- complex. This complex reacts with CO2via two different pathways to form formate, where CO2 is hydrogenated, or to form bicarbonate, where CO2 is carbonated. The overall formula of this reaction is identical to a typical electrochemical CO2 reduction reaction on a Pt electrode. Since the reactants are electrons and isolated, single atoms and molecules, we term this reaction a molecular-level electrochemical CO2 reduction reaction. Mechanistic analysis reveals that the negative charge distribution on the Pt-H and the -OH moieties in H-Pt-OH- is critical for the hydrogenation and carbonation of CO2. The realization of the molecular-level CO2 reduction reaction provides insights into the design of novel catalysts for the electrochemical conversion of CO2.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| | - Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| | - Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA.
| |
Collapse
|
11
|
Xu J, Xu X, Li D, Jian J. Spectroscopic Characterization of Two Boron Heterocyclic Radicals in the Solid Neon Matrix. Phys Chem Chem Phys 2022; 24:7961-7968. [DOI: 10.1039/d2cp00076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel boron heterocyclic radicals, 3,4,5-trihydroborinine radical and 1-methyl-2-dihydro-1H-borole radical, were observed in the reaction of boron atom with cyclopentene. These radicals were trapped in solid neon and identified by...
Collapse
|
12
|
Li D, Xu J, Xu X, Yang W, Jian J. Matrix Infrared Spectra of 1-Ethynyl-1H-Silole Species from Reaction of Silicon Atoms with Benzene. Phys Chem Chem Phys 2022; 24:4978-4986. [DOI: 10.1039/d1cp05245d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of silicon atoms with benzene molecule in solid neon are studied by matrix isolation infrared spectroscopy. Aided by carbon-13 and deuterium isotopic shifts as well as quantum-chemical predictions,...
Collapse
|
13
|
Liu G, Ariyarathna IR, Ciborowski SM, Zhu Z, Miliordos E, Bowen KH. Simultaneous Functionalization of Methane and Carbon Dioxide Mediated by Single Platinum Atomic Anions. J Am Chem Soc 2020; 142:21556-21561. [PMID: 33307694 DOI: 10.1021/jacs.0c11112] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mass spectrometric analysis of the anionic products of interaction among Pt-, methane, and carbon dioxide shows that the methane activation complex, H3C-Pt-H-, reacts with CO2 to form [H3C-Pt-H(CO2)]-. Two hydrogenation and one C-C bond coupling products are identified as isomers of [H3C-Pt-H(CO2)]- by a synergy between anion photoelectron spectroscopy and quantum chemical calculations. Mechanistic study reveals that both CH4 and CO2 are activated by the anionic Pt atom and that the successive depletion of the negative charge on Pt drives the CO2 insertion into the Pt-H and Pt-C bonds of H3C-Pt-H-. This study represents the first example of the simultaneous functionalization of CH4 and CO2 mediated by single atomic anions.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218,United States
| | - Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Sandra M Ciborowski
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218,United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218,United States
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland 21218,United States
| |
Collapse
|