1
|
Zheng T, Ma J, Chen H, Jiang H, Lu S, Shi Z, Liu F, Houk KN, Liang Y. Computational Design of Ligands for the Ir-Catalyzed C5-Borylation of Indoles through Tuning Dispersion Interactions. J Am Chem Soc 2024; 146:25058-25066. [PMID: 39207888 DOI: 10.1021/jacs.4c08027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The indole moiety is ubiquitous in natural products and pharmaceuticals. C-H borylation of the benzenoid moiety of indoles is a challenging task, especially at the C5 position. We have combined computational and experimental studies to introduce multiple noncovalent interactions, especially dispersion, between the substrate and catalytic ligand to realize C5-borylation of indoles with high reactivity and selectivity. The successful computational predictions of new ligands should be suitable for ligand design in other transition-metal catalyzed reactions.
Collapse
Affiliation(s)
- Tianyu Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiawei Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haochi Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Jiang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuo Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fang Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Nakanishi T, Terada M. Computational molecular refinement to enhance enantioselectivity by reinforcing hydrogen bonding interactions in major reaction pathway. Chem Sci 2023; 14:5712-5721. [PMID: 37265716 PMCID: PMC10231322 DOI: 10.1039/d3sc01637d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/29/2023] [Indexed: 06/03/2023] Open
Abstract
Computational analyses have revealed that the distortion of a catalyst and the substrates and their interactions are key to determining the stability of the transition state. Hence, two strategies "distortion strategy" and "interaction strategy" can be proposed for improving enantiomeric excess in enantioselective reactions. The "distortion strategy" is used as a conventional approach that destabilizes the TS (transition state) of the minor pathway. On the other hand, the "interaction strategy" focuses on the stabilization of the TS of the major pathway in which an enhancement of the reaction rate is expected. To realize this strategy, we envisioned the TS stabilization of the major reaction pathway by reinforcing hydrogen bonding and adopted the chiral phosphoric acid-catalysed enantioselective Diels-Alder reaction of 2-vinylquinolines with dienylcarbamates. The intended "interaction strategy" led to remarkable improvements in the enantioselectivity and reaction rate.
Collapse
Affiliation(s)
- Taishi Nakanishi
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University 6-3 Aramaki Aza Aoba, Aoba-ku Sendai Miyagi 980-8578 Japan
| |
Collapse
|
3
|
Yu ZL, Cheng YF, Liu JR, Yang W, Xu DT, Tian Y, Bian JQ, Li ZL, Fan LW, Luan C, Gao A, Gu QS, Liu XY. Cu(I)-Catalyzed Chemo- and Enantioselective Desymmetrizing C-O Bond Coupling of Acyl Radicals. J Am Chem Soc 2023; 145:6535-6545. [PMID: 36912664 DOI: 10.1021/jacs.3c00671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Transition-metal-catalyzed enantioselective functionalization of acyl radicals has so far not been realized, probably due to their relatively high reactivity, which renders the chemo- and stereocontrol challenging. Herein, we describe Cu(I)-catalyzed enantioselective desymmetrizing C-O bond coupling of acyl radicals. This reaction is compatible with (hetero)aryl and alkyl aldehydes and, more importantly, displays a very broad scope of challenging alcohol substrates, such as 2,2-disubstituted 1,3-diols, 2-substituted-2-chloro-1,3-diols, 2-substituted 1,2,3-triols, 2-substituted serinols, and meso primary 1,4-diols, providing enantioenriched esters characterized by challenging acyclic tetrasubstituted carbon stereocenters. Partnered by one- or two-step follow-up transformations, this reaction provides a convenient and practical strategy for the rapid preparation of chiral C3 building blocks from readily available alcohols, particularly the industrially relevant glycerol. Mechanistic studies supported the proposed C-O bond coupling of acyl radicals.
Collapse
Affiliation(s)
- Zhang-Long Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Ren Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wu Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan-Tong Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Qian Bian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Luan
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ang Gao
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Yao L, Gashaw Woldegiorgis A, Huang S, Wang Y, Lin X. Palladium-Catalyzed Directed Atroposelective C-H Iodination to Synthesize Axial Chiral Biaryl N-Oxides via Enantioselective Desymmetrization Strategy. Chemistry 2023; 29:e202203051. [PMID: 36263903 DOI: 10.1002/chem.202203051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 12/04/2022]
Abstract
The discovery of enantioselective desymmetrization reactions to provide practical synthesis of enantio-enriched atropisomeric biaryls is a challenging topic in the field of asymmetric catalysis. Herein, we report a highly enantioselective desymmetrization reaction for the synthesis of axially chiral biaryl N-oxides by atroposelective C-H iodination by using Pd(II) coordinated by N-benzoyl-l-phenylalanine as a chiral catalyst at room temperature. A broad range of products were obtained in high yields (up to 99 %) with excellent enantioselectivities (up to 98 % ee). The products could be synthesized in gram scale, one of which was proved to be a powerful organocatalyst in asymmetric allylation reaction. Mechanistic evidence as well as DFT calculations point towards the factors that lead to high reactivity and excellent enantiocontrol in this reaction.
Collapse
Affiliation(s)
- Linxi Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Alemayehu Gashaw Woldegiorgis
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shaoying Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yongtao Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xufeng Lin
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
5
|
Role of Chiral Skeleton in Chiral Phosphoric Acids Catalyzed Asymmetric Transfer Hydrogenation: A DFT Study. Catalysts 2023. [DOI: 10.3390/catal13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chiral phosphoric acids (CPAs) have received considerable attention due to their high activity for enantioselective transformations. However, the role of various chiral skeletons of CPAs in regulating the mechanism and enantioselectivity of asymmetric transfer hydrogenation has remained unclear. Density functional theory (DFT) calculations are performed to elucidate the role of chiral skeletons on the acidity, mechanism, enantioselectivity, and kinetic stabilities of transition states (TSs) in Asymmetric Transfer Hydrogen (ATH) reaction catalyzed by five CPAs. We found that the acidity of CPAs is strongly dependent on the chiral skeleton. The origin of enantioselectivity of ATH reaction arises from the differential noncovalent interactions between TSs and CPAs. Moreover, the shape and size of the catalyst pocket depending on chiral skeletons play key roles in the stability of TSs and the enantioselectivity of ATH. This study might facilitate to design and computationally screening of CPAs and guide the strategic choice of CPA skeletons to reduce the experimental workload.
Collapse
|
6
|
Li J, Chen H, Zhong R, Zhu L, Liu S, Ding H, Yang J, Wang L, Lan Y, Wang Z. Perfluoroarene Interaction-Controlled Chiral Phosphoric Acid-Catalyzed Enantioselective Michael Addition of Difluoroenoxysilanes to Azadienes: a Combination of Experimental and Theoretical Studies. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Haohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
| | - Rong Zhong
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Lei Zhu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
| | - Saimei Liu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| |
Collapse
|
7
|
Song J, Zheng WH. A highly enantioselective approach towards optically active γ-amino alcohols by tin-catalyzed kinetic resolution of 1,3-amino alcohols. Chem Commun (Camb) 2022; 58:7392-7395. [PMID: 35686938 DOI: 10.1039/d2cc01963a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective kinetic resolution of racemic 1,3-amino alcohols via O-Acylation was achieved using a chiral organotin as the catalyst. Alkyl- and aryl-substituted 1,3-amino alcohols were resolved with excellent efficiencies to afford the recovered 1,3-amino alcohols and acylative products with high enantioselectivities, with s factors up to >600. Notably, the chiral organotin catalyst was more selective for anti-1,3-amino alcohols than for syn-isomers. A Gram-scale reaction with loading using 2 mol% catalysts demonstrated the utility of this protocol.
Collapse
Affiliation(s)
- Jian Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
8
|
Song J, Zheng WH. Kinetic Resolution of Tertiary Alcohols by Chiral Organotin-Catalyzed O-Acylation. Org Lett 2022; 24:2349-2353. [PMID: 35315279 DOI: 10.1021/acs.orglett.2c00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel highly enantioselective method for the kinetic resolution of racemic tertiary alcohols has been achieved through chiral organotin-catalyzed intermolecular acylation of the hydroxyl group. This process has demonstrated a broad substrate scope (both alkyl- and aryl-substituted tertiary alcohols) with high enantioselectivity under mild reaction conditions, affording the corresponding products and the recovered tertiary alcohols with high enantioselectivities, with s factors up to >200.
Collapse
Affiliation(s)
- Jian Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| |
Collapse
|
9
|
Duan M, Díaz‐Oviedo CD, Zhou Y, Chen X, Yu P, List B, Houk KN, Lan Y. Chiral Phosphoric Acid Catalyzed Conversion of Epoxides into Thiiranes: Mechanism, Stereochemical Model, and New Catalyst Design. Angew Chem Int Ed Engl 2022; 61:e202113204. [PMID: 34889494 PMCID: PMC9305870 DOI: 10.1002/anie.202113204] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/28/2022]
Abstract
Computations and experiments leading to new chiral phosphoric acids (CPAs) for epoxide thionations are reported. Density functional theory calculations reveal the mechanism and origin of the enantioselectivity of such CPA-catalyzed epoxide thionations. The calculated mechanistic information was used to design new efficient CPAs that were tested experimentally and found to be highly effective. Bulky ortho-substituents on the 3,3'-aryl groups of the CPA are important to restrict the position of the epoxide in the key transition states for the enantioselectivity-determining step. Larger para-substituents significantly improve the enantioselectivity of the reaction.
Collapse
Affiliation(s)
- Meng Duan
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhouHenan450001China
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90095USA
- Department of Chemistry and Shenzhen Grubbs InstituteGuangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhen518055China
| | | | - Yang Zhou
- Department of Chemistry and Shenzhen Grubbs InstituteGuangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhen518055China
| | - Xiangyang Chen
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90095USA
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs InstituteGuangdong Provincial Key Laboratory of CatalysisSouthern University of Science and TechnologyShenzhen518055China
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrGermany
| | - Kendall N. Houk
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90095USA
| | - Yu Lan
- Green Catalysis Centerand College of ChemistryZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
10
|
Duan M, Díaz‐Oviedo CD, Zhou Y, Chen X, Yu P, List B, Houk KN, Lan Y. Chiral Phosphoric Acid Catalyzed Conversion of Epoxides into Thiiranes: Mechanism, Stereochemical Model, and New Catalyst Design. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meng Duan
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
- Department of Chemistry and Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | | | - Yang Zhou
- Department of Chemistry and Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr Germany
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Yu Lan
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
11
|
Mukai M, Nagao K, Yamaguchi S, Ohmiya H. Molecular Field Analysis Using Computational-Screening Data in Asymmetric N-Heterocyclic Carbene-Copper Catalysis toward Data-driven in silico Catalyst Optimization. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masakiyo Mukai
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shigeru Yamaguchi
- RIKEN Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
12
|
Xu Y, Zhai TY, Xu Z, Ye LW. Recent advances towards organocatalytic enantioselective desymmetrizing reactions. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Zhu WR, Su Q, Deng XY, Liu JS, Zhong T, Meng SS, Yi JT, Weng J, Lu G. Organocatalytic enantioselective S N1-type dehydrative nucleophilic substitution: access to bis(indolyl)methanes bearing quaternary carbon stereocenters. Chem Sci 2021; 13:170-177. [PMID: 35733509 PMCID: PMC9158264 DOI: 10.1039/d1sc05174a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
A highly general and straightforward approach to access chiral bis(indolyl)methanes (BIMs) bearing quaternary stereocenters has been realized via enantioconvergent dehydrative nucleophilic substitution. A broad range of 3,3'-, 3,2'- and 3,1'-BIMs were obtained under mild conditions with excellent efficiency and enantioselectivity (80 examples, up to 98% yield and >99 : 1 er). By utilizing racemic 3-indolyl tertiary alcohols as precursors of alkyl electrophiles and indoles as C-H nucleophiles, this organocatalytic strategy avoids pre-activation of substrates and produces water as the only by-product. Mechanistic studies suggest a formal SN1-type pathway enabled by chiral phosphoric acid catalysis. The practicability of the obtained enantioenriched BIMs was further demonstrated by versatile transformation and high antimicrobial activities (3al, MIC: 1 μg mL-1).
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiao-Yi Deng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jia-Sheng Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Tao Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shan-Shui Meng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
15
|
Reddi Y, Cramer CJ. Mechanism and Design Principles for Controlling Stereoselectivity in the Copolymerization of CO 2/Cyclohexene Oxide by Indium(III) Phosphasalen Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yernaidu Reddi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Ouellette ET, Lougee MG, Bucknam AR, Endres PJ, Kim JY, Lynch EJ, Sisko EJ, Sculimbrene BR. Desymmetrization of Diols by Phosphorylation with a Titanium-BINOLate Catalyst. J Org Chem 2021; 86:7450-7459. [PMID: 33999638 DOI: 10.1021/acs.joc.1c00414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The desymmetrization of ten prochiral diols by phosphoryl transfer with a titanium-BINOLate complex is discussed. The phosphorylation of nine 1,3-propane diols is achieved in yields of 50-98%. Enantiomeric ratios as high as 92:8 are achieved with diols containing a quaternary C-2 center incorporating a protected amine. The chiral ligand, base, solvent, and stoichiometry are evaluated along with a nonlinear effect study to support an active catalyst species that is oligomeric in chiral ligand. The use of pyrophosphates as the phosphorylating agent in the desymmetrization facilitates a user-friendly method for enantioselective phosphorylation with desirable protecting groups (benzyl, o-nitrobenzyl) on the phosphate product.
Collapse
Affiliation(s)
- Erik T Ouellette
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Marshall G Lougee
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Andrea R Bucknam
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Paul J Endres
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - John Y Kim
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Emma J Lynch
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Elizabeth J Sisko
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| | - Bianca R Sculimbrene
- Department of Chemistry, College of the Holy Cross, 1 College Sreet, Worcester, Massachusetts 01610, United States
| |
Collapse
|
17
|
Liu W, Yang X. Recent Advances in (Dynamic) Kinetic Resolution and Desymmetrization Catalyzed by Chiral Phosphoric Acids. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wei Liu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 (P. R. China
- University of Chinese Academy of Sciences Beijing 100049 (P. R. China
- Shanghai Institute of Organic Chemistry Shanghai 200032 (P. R. China
| | - Xiaoyu Yang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 (P. R. China
| |
Collapse
|
18
|
Wang X, Li SJ, Wang YN, Wei D, Lan Y. Theoretical Model for N-Heterocyclic Carbene-Catalyzed Desymmetrizing [4 + 1] and [4 + 2] Annulations of an Enal and Aryldialdehyde with 1,3-Cyclopentenedione. Org Lett 2021; 23:2421-2425. [DOI: 10.1021/acs.orglett.1c00270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xinghua Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan China
| | - Ya-Nan Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan China
| |
Collapse
|
19
|
Qiu Y, Yuan H, Zhang X, Zhang J. Insights into the Chiral Phosphoric Acid-Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes: An Allyl Carbocation/Phosphate Pair Mechanism. J Org Chem 2021; 86:4121-4130. [PMID: 33617248 DOI: 10.1021/acs.joc.0c02956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Computational studies of chiral phosphoric acid (CPA)-catalyzed dynamic kinetic asymmetric hydroamination (DyKAH) of racemic allenes show that the reaction proceeds through a catalytic asymmetric model involving a highly reactive π-allylic carbocationic intermediate, generated from a racemic allene through an intermolecular proton transfer mediated by CPA, which also results in a high E/Z selectivity. Moreover, the distortion-interaction, atom in molecule, and electrostatic interaction analyses and space-filling models are employed on the basis of the DyKAH catalyzed by (S)-A5 (reaction 1) or (R)-A2 (reaction 2) to explain the high enantioselectivity and the controlling effects of SPINOL scaffolds on the signs of enantioselectivity. Our calculations indicate that the enantioselectivity of reactions 1 and 2 can be mainly ascribed to the favorable noncovalent interactions within the stronger chiral electrostatic environment created by the phosphoric acid in the preferential transition states. Finally, the effect of (S/R)-SPINOL-based CPAs on the signs of enantioselectivity can be explained by the different combination modes of substrates into the chiral binding pocket of the catalyst controlled by the chirality of SPINOL backbones. Overall, the new insights into the reaction rationalize the outcome and these key factors that affect the product enantioselectivity are important to guide the DyKAHs.
Collapse
Affiliation(s)
- Yuting Qiu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiyan Yuan
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoying Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jingping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
20
|
Zhu WR, Su Q, Diao HJ, Wang EX, Wu F, Zhao YL, Weng J, Lu G. Enantioselective Dehydrative γ-Arylation of α-Indolyl Propargylic Alcohols with Phenols: Access to Chiral Tetrasubstituted Allenes and Naphthopyrans. Org Lett 2020; 22:6873-6878. [PMID: 32808789 DOI: 10.1021/acs.orglett.0c02386] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we report an enantioselective dehydrative γ-arylation of α-indolyl propargylic alcohols with phenols via organocatalysis, which provides efficient access to chiral tetrasubstituted allenes and naphthopyrans in high yields with excellent regio- and enantioselectivities under mild conditions. This method features the use of cheaply available naphthols/phenols as the C-H aryl source and liberating water as the sole byproduct. Control experiments suggest that the excellent enantioselectivity and remote regioselectivity stem from dual hydrogen-bonding interaction with the chiral phosphoric acid catalyst.
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hong-Juan Diao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Er-Xuan Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Feng Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yun-Long Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
21
|
Yu ZL, Cheng YF, Jiang NC, Wang J, Fan LW, Yuan Y, Li ZL, Gu QS, Liu XY. Desymmetrization of unactivated bis-alkenes via chiral Brønsted acid-catalysed hydroamination. Chem Sci 2020; 11:5987-5993. [PMID: 34094089 PMCID: PMC8159283 DOI: 10.1039/d0sc00001a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although great success has been achieved in catalytic asymmetric hydroamination of unactivated alkenes using transition metal catalysis and organocatalysis, the development of catalytic desymmetrising hydroamination of such alkenes remains a tough challenge in terms of attaining a high level of stereocontrol over both remote sites and reaction centers at the same time. To address this problem, here we report a highly efficient and practical desymmetrising hydroamination of unactivated alkenes catalysed by chiral Brønsted acids with both high diastereoselectivity and enantioselectivity. This method features a remarkably broad alkene scope, ranging from mono-substituted and gem-/1,2-disubstituted to the challenging tri- and tetra-substituted alkenes, to provide access to a variety of diversely functionalized chiral pyrrolidines bearing two congested tertiary or quaternary stereocenters with excellent efficiency under mild and user-friendly synthetic conditions. The key to success is indirect activation of unactivated alkenes by chiral Brønsted acids via a concerted hydroamination mechanism.
Collapse
Affiliation(s)
- Zhang-Long Yu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Na-Chuan Jiang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Jian Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Yue Yuan
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology Shenzhen 518055 China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology Shenzhen 518055 China .,Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|