1
|
Wang F, Dong G, Yang S, Ji CL, Liu K, Han J, Xie J. Selective Functionalization of Alkenes and Alkynes by Dinuclear Manganese Catalysts. Acc Chem Res 2024; 57:2985-3006. [PMID: 39356824 DOI: 10.1021/acs.accounts.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
ConspectusAlkenes and alkynes are fundamental building blocks in organic synthesis due to their commercial availability, bench-stability, and easy preparation. Selective functionalization of alkenes and alkynes is a crucial step for the synthesis of value-added compounds. Precise control over these reactions allows efficient construction of complex molecules with new functionalities. In recent decades, second- and third-row precious transition metal catalysts (palladium, platinum, rhodium, ruthenium) have been pivotal in the development of metal-catalyzed synthetic methodology. These metals exhibit excellent catalytic activity and selectivity, enabling efficient synthesis of functionalized organic molecules. However, recovery and reuse of precious metals have long been a challenge in this field. In recent years, exploration of earth-abundant metal-catalyzed organic reactions has interested both academic and industrial researchers. The development of such catalytic systems offers a promising approach to overcome the limitations of precious metal catalysts. For example, manganese is the third most naturally abundant transition metal with minimal toxicity and excellent biocompatibility. It exhibits good catalytic activity in several organic reactions, including C-H bond functionalization, selective reduction, and radical reactions. This Account outlines our recent progress in dinuclear manganese catalysis for selective functionalization of alkenes and alkynes. We have established the elementary manganese(I)-catalysis in transmetalation with R-B(OH)2. This finding has enabled us to apply the catalyst for the selective 1,2-difunctionalization of structurally diverse alkenes and alkynes. Mechanistic studies suggest a double manganese center synergistic activation model, as superior to Mn(CO)5Br in some cases. In addition, we have developed a ligand-tuned metalloradical strategy of dinuclear manganese catalysts (Mn2(CO)10), bridging the gap between the organometallics and radical chemistry, highlighting the unique radical functionalization of alkenes. Interestingly, using the same starting materials, different ligands can deliver completely different products. Meanwhile, a cooperative catalysis strategy involving manganese and other catalysts (e.g., cobalt, iminium) has also been developed and is briefly discussed. For manganese/iminium synergistic catalysis, a new mechanism for migratory insertion and demetalization-isomerization in synergistic HOMO-LUMO activation was disclosed. This strategy expands the application of low-valent manganese catalysts for enantioselective C-C bond-forming reactions. New reaction discovery is outpacing mechanism studies for dinuclear manganese catalysis, and future studies with time-resolved spectroscopy will improve understanding of the mechanism. Based on these intriguing findings, the precise functionalization of alkenes and alkynes by dinuclear manganese catalysts will expedite a novel activation model to enable late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guichao Dong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Suqi Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng-Long Ji
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Suzuki H, Yamanokuchi S, Moro R, Matsuda T. Palladium-Catalyzed anti-Michael-Type Hydroamination of N-(Quinolin-8-yl)acrylamide with 2-Pyridones. Org Lett 2024; 26:6444-6448. [PMID: 39047185 DOI: 10.1021/acs.orglett.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Here we report a palladium-catalyzed anti-Michael-type hydroamination of N-(quinolin-8-yl)acrylamide with 2-pyridones. The use of a palladium catalyst enables the α-addition of 2-pyridones, resulting in the formation of a range of N-substituted 2-pyridone carboxamides with yields ranging from 10% to 80%. Derivatization of the products highlights the utility of this transformation. Preliminary mechanistic investigations suggest that the reaction proceeds through the direct addition of a nitrogen atom of 2-pyridones, ruling out other pathways such as O-to-N-alkyl migration.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Soma Yamanokuchi
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ryota Moro
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
3
|
Suzuki H, Moro R, Matsuda T. Palladium-Catalyzed anti-Michael-Type (Hetero)arylation of Acrylamides. J Am Chem Soc 2024; 146:13697-13702. [PMID: 38742920 DOI: 10.1021/jacs.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This paper reports a direct α-(hetero)arylation of acrylamides through an inverse electron-demand nucleophilic addition, specifically an anti-Michael-type addition. The introduction of a quinolyl directing group facilitates the nucleophilic addition of (hetero)arenes to the α-position of acrylamides. The quinolyl directing group effectively suppresses undesired β-hydrogen elimination and is removable for subsequent derivatization. The presented method provides an atom economical synthesis of α-(hetero)arylamide with a high degree of functional group tolerance.
Collapse
Affiliation(s)
- Hirotsugu Suzuki
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Ryota Moro
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
4
|
Li S, Davies PW, Shu W. Modular synthesis of α-arylated carboxylic acids, esters and amides via photocatalyzed triple C-F bond cleavage of methyltrifluorides. Chem Sci 2022; 13:6636-6641. [PMID: 35756515 PMCID: PMC9172449 DOI: 10.1039/d2sc01905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
α-Arylated carboxylic acids, esters and amides are widespread motifs in bioactive molecules and important building blocks in chemical synthesis. Thus, straightforward and rapid access to such structures is highly desirable. Here we report an organophotocatalytic multicomponent synthesis of α-arylated carboxylic acids, esters and amides from exhaustive defluorination of α-trifluoromethyl alkenes in the presence of alkyltrifluoroborates, water and nitrogen/oxygen nucleophiles. This operationally simple strategy features a unified access to functionally diverse α-arylated carboxylic acids, esters, and primary, secondary, and tertiary amides through backbone assembly from simple starting materials enabled by consecutive C–F bond functionalization at room temperature. Preliminary mechanistic investigations reveal that the reaction operates through a radical-triggered three-step cascade process, which involves distinct mechanisms for each defluorinative functionalization of the C–F bond. Here we report an organophotocatalytic synthesis of α-arylated carboxylic acids, esters and amides from exhaustive defluorination of α-trifluoromethyl alkenes in the presence of alkyltrifluoroborates, water and nitrogen/oxygen nucleophiles.![]()
Collapse
Affiliation(s)
- Sifan Li
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China .,School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Paul W Davies
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong China
| |
Collapse
|
5
|
Sen B, Roy S, Garai S, Roy S, Anoop A, Hajra S. Stereochemistry of the Benzylidene γ-Butyrolactone Dictates the Reductive Heck Cyclization Mode in the Asymmetric Synthesis of Aryltetralin Lignans: A Detailed Experimental and Theoretical Study. J Org Chem 2022; 87:3910-3921. [PMID: 35130698 DOI: 10.1021/acs.joc.1c02174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reductive Heck cyclization of nonracemic benzylidene γ-butyrolactone is studied toward the asymmetric synthesis of aryltetralin lignans, where the stereochemistry of the benzylidene lactone is found to control the mode of cyclization. The Z-isomer undergoes mostly 6-endo-cyclization and provides the desired (-)-isopodophyllotoxin along with a minor amount of 5-exo-cyclized product, but the E-isomer goes through exclusively 5-exo-cyclization, leading to the undesired dihydroindenolactone compound instead of (-)-podophyllotoxin. The experimental results are well-supported by the DFT studies.
Collapse
Affiliation(s)
- Biswajit Sen
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Saikat Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sujay Garai
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India.,Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayan Roy
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Saumen Hajra
- Center of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
6
|
Li ZQ, Apolinar O, Deng R, Engle KM. Directed Markovnikov hydroarylation and hydroalkenylation of alkenes under nickel catalysis. Chem Sci 2021; 12:11038-11044. [PMID: 34522301 PMCID: PMC8386646 DOI: 10.1039/d1sc03121j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/10/2021] [Indexed: 11/21/2022] Open
Abstract
We report a full account of our research on nickel-catalyzed Markovnikov-selective hydroarylation and hydroalkenylation of non-conjugated alkenes, which has yielded a toolkit of methods that proceed under mild conditions with alkenyl sulfonamide, ketone, and amide substrates. Regioselectivity is controlled through catalyst coordination to the native Lewis basic functional groups contained within these substrates. To maximize product yield, reaction conditions were fine-tuned for each substrate class, reflecting the different coordination properties of the directing functionality. Detailed kinetic and computational studies shed light on the mechanism of this family of transformations, pointing to transmetalation as the turnover-limiting step. Native Lewis basic functional groups enable the nickel-catalyzed Markovnikov-selective hydroarylation and hydroalkenylation of unactivated alkenes with organoboron reagents.![]()
Collapse
Affiliation(s)
- Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Omar Apolinar
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Ruohan Deng
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| |
Collapse
|
7
|
Liu CF, Luo X, Wang H, Koh MJ. Catalytic Regioselective Olefin Hydroarylation(alkenylation) by Sequential Carbonickelation-Hydride Transfer. J Am Chem Soc 2021; 143:9498-9506. [PMID: 34152130 DOI: 10.1021/jacs.1c03228] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alkene hydrocarbofunctionalization represents one of the most important classes of chemical transformations, but related branched-selective examples with unactivated olefins are scarce. Here, we report that catalytic amounts of a dimeric Ni(I) complex and an exogenous alkoxide base promote Markovnikov-selective hydroarylation(alkenylation) of unactivated and activated olefins using organo bromides or triflates derived from widely available phenols and ketones. Products bearing aryl- and alkenyl-substituted tertiary and quaternary centers could be isolated in up to 95% yield and >99:1 regioisomeric ratios. Contrary to previous dual-catalytic methods that rely on metal-hydride atom transfer (MHAT) to the olefin prior to carbofunctionalization with a cocatalyst, our mechanistic evidence points toward a nonradical reaction pathway that begins with site-selective carbonickelation across the C═C bond followed by hydride transfer using alkoxide as the hydride source. Utility of the single-catalyst protocol is highlighted through the synthesis of medicinally relevant scaffolds.
Collapse
Affiliation(s)
- Chen-Fei Liu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Xiaohua Luo
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Hongyu Wang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
8
|
Liu C, Ji C, Zhou T, Hong X, Szostak M. Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via C‐O/C‐H Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chengwei Liu
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Chong‐Lei Ji
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Tongliang Zhou
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Michal Szostak
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
9
|
Liu C, Ji CL, Zhou T, Hong X, Szostak M. Bimetallic Cooperative Catalysis for Decarbonylative Heteroarylation of Carboxylic Acids via C-O/C-H Coupling. Angew Chem Int Ed Engl 2021; 60:10690-10699. [PMID: 33596335 DOI: 10.1002/anie.202100949] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 11/10/2022]
Abstract
Cooperative bimetallic catalysis is a fundamental approach in modern synthetic chemistry. We report bimetallic cooperative catalysis for the direct decarbonylative heteroarylation of ubiquitous carboxylic acids via acyl C-O/C-H coupling. This novel catalytic system exploits the cooperative action of a copper catalyst and a palladium catalyst in decarbonylation, which enables highly chemoselective synthesis of important heterobiaryl motifs through the coupling of carboxylic acids with heteroarenes in the absence of prefunctionalization or directing groups. This cooperative decarbonylative method uses common carboxylic acids and shows a remarkably broad substrate scope (>70 examples), including late-stage modification of pharmaceuticals and streamlined synthesis of bioactive agents. Extensive mechanistic and computational studies were conducted to gain insight into the mechanism of the reaction. The key step involves intersection of the two catalytic cycles via transmetallation of the copper-aryl species with the palladium(II) intermediate generated by oxidative addition/decarbonylation.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Chong-Lei Ji
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, USA
| |
Collapse
|
10
|
Suslick BA, Tilley TD. Olefin Hydroarylation Catalyzed by a Single-Component Cobalt(-I) Complex. Org Lett 2021; 23:1495-1499. [PMID: 33560852 DOI: 10.1021/acs.orglett.1c00258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A single-component Co(-I) catalyst, [(PPh3)3Co(N2)]Li(THF)3, has been developed for olefin hydroarylations with (N-aryl)aryl imine substrates. More than 40 examples were examined under mild reaction conditions to afford the desired alkyl-arene product in good to excellent yields. Catalysis occurs in a regioselective manner to afford exclusively branched products with styrene-derived substrates or linear products for aliphatic olefins. Electron-withdrawing functional groups (e.g., -F, -CF3, and -CO2Me) were tolerated under the reaction conditions.
Collapse
Affiliation(s)
- Benjamin A Suslick
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Li Z, Fu Y, Deng R, Tran VT, Gao Y, Liu P, Engle KM. Ligand‐Controlled Regiodivergence in Nickel‐Catalyzed Hydroarylation and Hydroalkenylation of Alkenyl Carboxylic Acids**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zi‐Qi Li
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Yue Fu
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Ruohan Deng
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Van T. Tran
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Yang Gao
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Peng Liu
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Keary M. Engle
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| |
Collapse
|
12
|
Li Z, Fu Y, Deng R, Tran VT, Gao Y, Liu P, Engle KM. Ligand‐Controlled Regiodivergence in Nickel‐Catalyzed Hydroarylation and Hydroalkenylation of Alkenyl Carboxylic Acids**. Angew Chem Int Ed Engl 2020; 59:23306-23312. [DOI: 10.1002/anie.202010840] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Zi‐Qi Li
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Yue Fu
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Ruohan Deng
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Van T. Tran
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Yang Gao
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Peng Liu
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Keary M. Engle
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla California 92037 USA
| |
Collapse
|
13
|
Guo T, Ding Y, Zhou L, Xu H, Loh TP, Wu X. Palladium-Catalyzed anti-Michael Reductive Heck Reaction of α,β-Unsaturated Esters. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02414] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Guo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yalan Ding
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lili Zhou
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616
| | - Xiaojin Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|