1
|
Legein C, Morgan BJ, Squires AG, Body M, Li W, Burbano M, Salanne M, Charpentier T, Borkiewicz OJ, Dambournet D. Correlated Anion Disorder in Heteroanionic Cubic TiOF 2. J Am Chem Soc 2024; 146:21889-21902. [PMID: 39056215 PMCID: PMC11311215 DOI: 10.1021/jacs.4c06304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Resolving anion configurations in heteroanionic materials is crucial for understanding and controlling their properties. For anion-disordered oxyfluorides, conventional Bragg diffraction cannot fully resolve the anionic structure, necessitating alternative structure determination methods. We have investigated the anionic structure of anion-disordered cubic (ReO3-type) TiOF2 using X-ray pair distribution function (PDF), 19F MAS NMR analysis, density functional theory (DFT), cluster expansion modeling, and genetic-algorithm structure prediction. Our computational data predict short-range anion ordering in TiOF2, characterized by predominant cis-[O2F4] titanium coordination, resulting in correlated anion disorder at longer ranges. To validate our predictions, we generated partially disordered supercells using genetic-algorithm structure prediction and computed simulated X-ray PDF data and 19F MAS NMR spectra, which we compared directly to experimental data. To construct our simulated 19F NMR spectra, we derived new transformation functions for mapping calculated magnetic shieldings to predicted magnetic chemical shifts in titanium (oxy)fluorides, obtained by fitting DFT-calculated magnetic shieldings to previously published experimental chemical shift data for TiF4. We find good agreement between our simulated and experimental data, which supports our computationally predicted structural model and demonstrates the effectiveness of complementary experimental and computational techniques in resolving anionic structure in anion-disordered oxyfluorides. From additional DFT calculations, we predict that increasing anion disorder makes lithium intercalation more favorable by, on average, up to 2 eV, highlighting the significant effect of variations in short-range order on the intercalation properties of anion-disordered materials.
Collapse
Affiliation(s)
- Christophe Legein
- Institut
des Molécules et des Matériaux du Mans (IMMM), UMR 6283
CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Benjamin J. Morgan
- Department
of Chemistry, University of Bath, Claverton Down BA2 7AY, United Kingdom
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
| | - Alexander G. Squires
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United Kingdom
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Monique Body
- Institut
des Molécules et des Matériaux du Mans (IMMM), UMR 6283
CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Wei Li
- Sorbonne
Université, CNRS, Physico-chimie
des électrolytes et nano-systèmes interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Mario Burbano
- Sorbonne
Université, CNRS, Physico-chimie
des électrolytes et nano-systèmes interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | - Mathieu Salanne
- Sorbonne
Université, CNRS, Physico-chimie
des électrolytes et nano-systèmes interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| | | | - Olaf J. Borkiewicz
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Damien Dambournet
- Sorbonne
Université, CNRS, Physico-chimie
des électrolytes et nano-systèmes interfaciaux, PHENIX, F-75005 Paris, France
- Réseau
sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
2
|
Rahman M, Dannatt HRW, Blundell CD, Hughes LP, Blade H, Carson J, Tatman BP, Johnston ST, Brown SP. Polymorph Identification for Flexible Molecules: Linear Regression Analysis of Experimental and Calculated Solution- and Solid-State NMR Data. J Phys Chem A 2024; 128:1793-1816. [PMID: 38427685 PMCID: PMC10945485 DOI: 10.1021/acs.jpca.3c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
The Δδ regression approach of Blade et al. [ J. Phys. Chem. A 2020, 124(43), 8959-8977] for accurately discriminating between solid forms using a combination of experimental solution- and solid-state NMR data with density functional theory (DFT) calculation is here extended to molecules with multiple conformational degrees of freedom, using furosemide polymorphs as an exemplar. As before, the differences in measured 1H and 13C chemical shifts between solution-state NMR and solid-state magic-angle spinning (MAS) NMR (Δδexperimental) are compared to those determined by gauge-including projector augmented wave (GIPAW) calculations (Δδcalculated) by regression analysis and a t-test, allowing the correct furosemide polymorph to be precisely identified. Monte Carlo random sampling is used to calculate solution-state NMR chemical shifts, reducing computation times by avoiding the need to systematically sample the multidimensional conformational landscape that furosemide occupies in solution. The solvent conditions should be chosen to match the molecule's charge state between the solution and solid states. The Δδ regression approach indicates whether or not correlations between Δδexperimental and Δδcalculated are statistically significant; the approach is differently sensitive to the popular root mean squared error (RMSE) method, being shown to exhibit a much greater dynamic range. An alternative method for estimating solution-state NMR chemical shifts by approximating the measured solution-state dynamic 3D behavior with an ensemble of 54 furosemide crystal structures (polymorphs and cocrystals) from the Cambridge Structural Database (CSD) was also successful in this case, suggesting new avenues for this method that may overcome its current dependency on the prior determination of solution dynamic 3D structures.
Collapse
Affiliation(s)
- Mohammed Rahman
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | | | - Leslie P. Hughes
- Oral
Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Helen Blade
- Oral
Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Jake Carson
- Mathematics
Institute at Warwick, University of Warwick, Coventry CV4 7AL, U.K.
| | - Ben P. Tatman
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Steven P. Brown
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
3
|
Zimmerhofer F, Huppertz H. A new high-pressure polymorph of K 2MoO 2F 4. Dalton Trans 2023; 52:17514-17523. [PMID: 37960977 DOI: 10.1039/d3dt02992a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In this paper, a new high-pressure (HP) polymorph of the otherwise known oxyfluoride K2MoO2F4 is presented. The crystal structure was determined by use of single-crystal X-ray diffractometry and its features are described in detail herein. HP-K2MoO2F4 crystallizes in the monoclinic space group C2/m (no. 12) with the cell parameters a = 13.8579(5), b = 5.8109(2), c = 6.9442(3) Å, β = 90.36(1)°, V = 559.18(4) Å3, and Z = 4 at T = 301(2) K. Bond valence (BV) and charge distribution (CHARDI) calculations were carried out to support the assignment of oxygen and fluorine to the various anion positions and Madelung part of lattice energy (MAPLE) calculations were used to validate the structure model. Infrared spectroscopy provided further information on the structure and water content of the inseparable side phase.
Collapse
Affiliation(s)
- Fabian Zimmerhofer
- University of Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Hubert Huppertz
- University of Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Zakary O, Body M, Charpentier T, Sarou-Kanian V, Legein C. Structural Modeling of O/F Correlated Disorder in TaOF 3 and NbOF 3-x(OH) x by Coupling Solid-State NMR and DFT Calculations. Inorg Chem 2023; 62:16627-16640. [PMID: 37747836 DOI: 10.1021/acs.inorgchem.3c02844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The structure of MOF3 (M = Nb, Ta) compounds was precisely modeled by combining powder X-ray diffraction, solid-state NMR spectroscopy, and semiempirical dispersion-corrected DFT calculations. It consists of stacked ∞(MOF3) layers along the c⃗ direction formed by heteroleptic corner-connected MX6 (X = O, F) octahedra. 19F NMR resonance assignments and occupancy rates of the anionic crystallographic sites have been revised. The bridging site is shared equally by the anions, and the terminal site is occupied by F only. An O/F correlated disorder is expected since cis-MO2F4 octahedra are favored, resulting in one-dimensional -F-M-O-M- strings along the <100> and <010> directions. Ten different 2 × 2 × 1 supercells per compound, fulfilling these characteristics, were built. Using DFT calculations and the GIPAW approach, the supercells were relaxed and the 19F isotropic chemical shift values were determined. The agreement between the experimental and calculated 19F spectra is excellent for TaOF3. The 1H and 19F experimental NMR spectra revealed that some of the bridging F atoms are substituted by OH groups, especially in NbOF3. New supercells involving OH groups were generated. Remarkably, the best agreement is obtained for the supercells with the composition closest to that estimated from the 19F NMR spectra, i.e., NbOF2.85(OH)0.15.
Collapse
Affiliation(s)
- Ouail Zakary
- Institut des Molécules et Matériaux du Mans (IMMM) - UMR 6283 CNRSLe Mans Université, 72805 Le Mans Cedex 9, France
| | - Monique Body
- Institut des Molécules et Matériaux du Mans (IMMM) - UMR 6283 CNRSLe Mans Université, 72805 Le Mans Cedex 9, France
| | | | | | - Christophe Legein
- Institut des Molécules et Matériaux du Mans (IMMM) - UMR 6283 CNRSLe Mans Université, 72805 Le Mans Cedex 9, France
| |
Collapse
|
5
|
Legein C, Body M, Lhoste J, Li W, Charpentier T, Dambournet D. Synthesis, crystal structure and 19F NMR parameters modelling of CaTiF6(H2O)2 yielding to a revision of the bond-valence parameters for the Ti4+/F− ion pair. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Ahmed B, Ok KM. Novel layered heterobimetallic fluorides with large optical band gaps. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Hu Y, Jiang X, Wu T, Xue Y, Wu C, Huang Z, Lin Z, Xu J, Humphrey MG, Zhang C. Wide Bandgaps and Strong SHG Responses of Hetero-Oxyfluorides by Dual-Fluorination-Directed Bandgap Engineering. Chem Sci 2022; 13:10260-10266. [PMID: 36277635 PMCID: PMC9473499 DOI: 10.1039/d2sc02137d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
A wide bandgap is an essential requirement for a nonlinear optical (NLO) material. However, it is very challenging to simultaneously engineer a wide bandgap and a strong second-harmonic generation (SHG) response, particularly in NLO materials containing second-order Jahn–Teller (SOJT) distorted units. Herein, we employ a bandgap engineering strategy that involves the dual fluorination of two different types of SOJT distorted units to realize remarkably wide bandgaps in the first examples of 5d0-transition metal (TM) fluoroiodates. Crystalline A2WO2F3(IO2F2) (A = Rb (RWOFI) and Cs (CWOFI)) exhibit the largest bandgaps yet observed in d0-TM iodates (4.42 (RWOFI) and 4.29 eV (CWOFI)), strong phase-matching SHG responses of 3.8 (RWOFI) and 3.5 (CWOFI) × KH2PO4, and wide optical transparency windows. Computational studies have shown that the excellent optical responses result from synergism involving the two fluorinated SOJT distorted units ([WO3F3]3− and [IO2F2]−). This work provides not only an efficient strategy for bandgap modulation of NLO materials, but also affords insight into the relationship between the electronic structure of the various fluorinated SOJT distorted units and the optical properties of crystalline materials. Wide bandgaps, strong SHG responses, and sufficient birefringence are observed in the first examples of 5d0-transition metal fluoroiodates, A2WO2F3(IO2F2) (A = Rb, and Cs), which were constructed by dual-fluorination-directed bandgap engineering.![]()
Collapse
Affiliation(s)
- Yilei Hu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Xingxing Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Tianhui Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Yanyan Xue
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Chao Wu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Zhipeng Huang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jun Xu
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Chi Zhang
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University Shanghai 200092 China
| |
Collapse
|
8
|
Ding F, Charles N, Harada JK, Malliakas CD, Zhang C, Dos Reis R, Griffith KJ, Nisbet ML, Zhang W, Halasyamani PS, Dravid VP, Rondinelli JM, Poeppelmeier KR. Perovskite-like K 3TiOF 5 Exhibits (3 + 1)-Dimensional Commensurate Structure Induced by Octahedrally Coordinated Potassium Ions. J Am Chem Soc 2021; 143:18907-18916. [PMID: 34729984 DOI: 10.1021/jacs.1c05704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Elpasolite- and cryolite-type oxyfluorides can be regarded as superstructures of perovskite and exhibit structural diversity. While maintaining a similar structural topology with the prototype structures, changes in the size, electronegativity, and charge of cation and/or anion inevitably lead to structural evolution. Therefore, the nominal one-to-one relation suggested by a doubled formula of perovskite does not guarantee a simple 2-fold superstructure for many cases. Herein, the commensurately modulated perovskite-like K3TiOF5 was refined at 100 K from single-crystal X-ray diffraction data by using a pseudotetragonal subcell with lattice parameters of a = b = 6.066(2) Å and c = 8.628(2) Å. The length of the modulation vector was refined to 0.3a* + 0.1b* + 0.25c*. In the commensurate supercell of K3TiOF5, the B-site Ti4+ and K+ cations in [TiOF5]3- and [KOF5]6- octahedral units were found to be significantly displaced from the average atomic positions refined in the subcell. The displacements of the K+ cations are ±0.76 Å, and those for the Ti4+ cations are approximately ±0.13 Å. One- and two-dimensional solid-state 19F NMR measurements revealed two tightly clustered groups of resonances in a ratio of ca. 4:1, assigned to equatorial and axial fluorine, respectively, consistent with local [TiOF5]3- units. S/TEM results confirmed the average structure. Electronic structure calculations of the idealized I4mm subcell indicate the instability to a modulated structure arises from soft optical modes that is controlled by the octahedrally coordinated B-site potassium ions in the cryolite-type structure.
Collapse
Affiliation(s)
- Fenghua Ding
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nenian Charles
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jaye K Harada
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chi Zhang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kent J Griffith
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew L Nisbet
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Weiguo Zhang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - P Shiv Halasyamani
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth R Poeppelmeier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Flynn S, Zhang C, Griffith KJ, Shen J, Wolverton C, Dravid VP, Poeppelmeier KR. Fluoridation of HfO 2. Inorg Chem 2021; 60:4463-4474. [PMID: 33667068 DOI: 10.1021/acs.inorgchem.0c03254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluoridation of HfO2 was carried out with three commonly used solid-state fluoridation agents: PVDF, PTFE, and NH4HF2. Clear and reproducible differences are observed in the reaction products of the fluoropolymer reagents and NH4HF2 with the latter more readily reacting in air. Strong evidence of distinct, previously unreported hafnium oxyfluoride phases is produced by both reactions, and efforts to isolate them were successful for the air-NH4HF2 reaction. Synchrotron XRD, 19F NMR, and elemental analysis were employed to characterize the phase-pure material which appears to be analogous to known Zr-O-F phases with anion-deficient α-UO3 structures such as Zr7O9F10. Comparison with the hydrolysis of β-HfF4 under identical conditions depicts that the NH4HF2 route produces the oxyfluoride with greater selectivity and at lower temperatures. Thermodynamic calculations were employed to explain this result. Potential reaction pathways for the NH4HF2 fluoridation of HfO2 are discussed.
Collapse
Affiliation(s)
- Steven Flynn
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chi Zhang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kent J Griffith
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiahong Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kenneth R Poeppelmeier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Albino M, Lhoste J, Body M, Legein C, Hémon-Ribaud A, Maisonneuve V, Leblanc M. Topotactic desolvation and condensation reactions of 3D Zn 3TiF 7(H 2O) 2(taz) 3·S (S = 3H 2O or C 2H 5OH). Dalton Trans 2020; 49:17758-17771. [DOI: 10.1039/d0dt03391j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermodiffraction, IR, DFT calculations, and 1H and 19F NMR characterizations of the desolvatation and reversible condensation reactions of Zn3TiF7(taz)3 family.
Collapse
Affiliation(s)
- M. Albino
- Institut des Molécules et des Matériaux du Mans (IMMM)
- UMR 6283 CNRS
- Le Mans Université
- 72085 Le Mans
- France
| | - J. Lhoste
- Institut des Molécules et des Matériaux du Mans (IMMM)
- UMR 6283 CNRS
- Le Mans Université
- 72085 Le Mans
- France
| | - M. Body
- Institut des Molécules et des Matériaux du Mans (IMMM)
- UMR 6283 CNRS
- Le Mans Université
- 72085 Le Mans
- France
| | - C. Legein
- Institut des Molécules et des Matériaux du Mans (IMMM)
- UMR 6283 CNRS
- Le Mans Université
- 72085 Le Mans
- France
| | - A. Hémon-Ribaud
- Institut des Molécules et des Matériaux du Mans (IMMM)
- UMR 6283 CNRS
- Le Mans Université
- 72085 Le Mans
- France
| | - V. Maisonneuve
- Institut des Molécules et des Matériaux du Mans (IMMM)
- UMR 6283 CNRS
- Le Mans Université
- 72085 Le Mans
- France
| | - M. Leblanc
- Institut des Molécules et des Matériaux du Mans (IMMM)
- UMR 6283 CNRS
- Le Mans Université
- 72085 Le Mans
- France
| |
Collapse
|