1
|
Greco A, Ohto T, Nagata Y, Bonn M, Backus EHG. Temperature-dependent vibrational energy relaxation of hydrogen-bonded and free OD groups at the air-water interface. J Chem Phys 2024; 161:174706. [PMID: 39494796 DOI: 10.1063/5.0231310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
Water interfaces play a crucial role in regulating interactions and energy flow. Vibrational sum-frequency generation (vSFG) spectroscopy provides structural and dynamic information on water molecules at interfaces. It has revealed, for instance, the presence of the hydrogen-bonded and free OH groups at the air-water interface. Here, using temperature-dependent, time-resolved vSFG, we focus on the vibrational energy relaxation dynamics of interfacial heavy water (D2O). We reveal that while the relaxation timescale for hydrogen-bonded OD stretch modes is temperature-independent, the lifetime of the free OD stretch mode decreases with increasing temperature. Our data, supported by simulations, suggest that both intramolecular energy transfer and rotational reorientation mechanisms jointly contribute to the energy relaxation process of the free OD, with temperature influencing these mechanisms differently.
Collapse
Affiliation(s)
- Alessandro Greco
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tatsuhiko Ohto
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty of Chemistry, Institute of Physical Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
2
|
Saak CM, Backus EHG. The Role of Sum-Frequency Generation Spectroscopy in Understanding On-Surface Reactions and Dynamics in Atmospheric Model-Systems. J Phys Chem Lett 2024; 15:4546-4559. [PMID: 38636165 PMCID: PMC11071071 DOI: 10.1021/acs.jpclett.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Surfaces, both water/air and solid/water, play an important role in mediating a multitude of processes central to atmospheric chemistry, particularly in the aerosol phase. However, the study of both static and dynamic properties of surfaces is highly challenging from an experimental standpoint, leading to a lack of molecular level information about the processes that take place at these systems and how they differ from bulk. One of the few techniques that has been able to capture ultrafast surface phenomena is time-resolved sum-frequency generation (SFG) spectroscopy. Since it is both surface-specific and chemically sensitive, the extension of this spectroscopic technique to the time domain makes it possible to study dynamic processes on the femtosecond time scale. In this Perspective, we will explore recent advances made in the field both in terms of studying energy dissipation as well as chemical reactions and the role the surface geometry plays in these processes.
Collapse
Affiliation(s)
- Clara-Magdalena Saak
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währingerstrasse 42, 1090 Vienna, Austria
| | - Ellen H. G. Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währingerstrasse 42, 1090 Vienna, Austria
| |
Collapse
|
3
|
Sung W, Inoue KI, Nihonyanagi S, Tahara T. Unified picture of vibrational relaxation of OH stretch at the air/water interface. Nat Commun 2024; 15:1258. [PMID: 38341439 DOI: 10.1038/s41467-024-45388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The elucidation of the energy dissipation process is crucial for understanding various phenomena occurring in nature. Yet, the vibrational relaxation and its timescale at the water interface, where the hydrogen-bonding network is truncated, are not well understood and are still under debate. In the present study, we focus on the OH stretch of interfacial water at the air/water interface and investigate its vibrational relaxation by femtosecond time-resolved, heterodyne-detected vibrational sum-frequency generation (TR-HD-VSFG) spectroscopy. The temporal change of the vibrationally excited hydrogen-bonded (HB) OH stretch band (ν=1→2 transition) is measured, enabling us to determine reliable vibrational relaxation (T1) time. The T1 times obtained with direct excitations of HB OH stretch are 0.2-0.4 ps, which are similar to the T1 time in bulk water and do not noticeably change with the excitation frequency. It suggests that vibrational relaxation of the interfacial HB OH proceeds predominantly with the intramolecular relaxation mechanism as in the case of bulk water. The delayed rise and following decay of the excited-state HB OH band are observed with excitation of free OH stretch, indicating conversion from excited free OH to excited HB OH (~0.9 ps) followed by relaxation to low-frequency vibrations (~0.3 ps). This study provides a complete set of the T1 time of the interfacial OH stretch and presents a unified picture of its vibrational relaxation at the air/water interface.
Collapse
Affiliation(s)
- Woongmo Sung
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Ken-Ichi Inoue
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Satoshi Nihonyanagi
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
4
|
Zhang Y, Zhang L, Cai C, Zhang J, Lu P, Shi N, Zhu W, He N, Pan X, Wang T, Feng Z. In situ study of structural changes: Exploring the mechanism of protein corona transition from soft to hard. J Colloid Interface Sci 2024; 654:935-944. [PMID: 37898077 DOI: 10.1016/j.jcis.2023.10.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
HYPOTHESIS The process of protein corona changes has been widely believed to follow the Vroman effect, while protein structural change during the process is rarely reported, due to the lack of analytical methods. In-situ interpretation for protein structural change is critical to processes such as the recognition and transport of nanomaterials. EXPERIMENTS Molecular dynamics (MD) simulation was used to predict the deflection and twist of the protein tertiary structure. The structural changes of the surface protein corona during the interaction of nanoparticles (NPs) with lipid bilayer were probed in situ and real-time by sum frequency generation (SFG) spectroscopy. FINDINGS The ring tertiary structure of the protein corona is altered from vertical to horizontal on particle surface, a process of the soft-to-hard structural transition, which is contributed by the hydrogen bonding force between the protein and water molecules. The negatively charged protein corona can induce the redistribution of interfacial charge, leading to a more stable hydrogen bond network of the interfacial water. Our findings suggest that the structural change from flexible to rigid is a crucial process in the soft-to-hard transition of the protein corona, which will be a beneficial supplement to the Vroman effect of protein adsorption.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Liqiang Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chenglong Cai
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jixiang Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengyu Lu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Neng Shi
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiran Zhu
- SceneRay Co., Ltd., Suzhou 215123, China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuchao Pan
- Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ting Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhangqi Feng
- Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Cuppen HM, Noble JA, Coussan S, Redlich B, Ioppolo S. Energy Transfer and Restructuring in Amorphous Solid Water upon Consecutive Irradiation. J Phys Chem A 2022; 126:8859-8870. [DOI: 10.1021/acs.jpca.2c06314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Herma M. Cuppen
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Jennifer A. Noble
- PIIM, Aix-Marseille Université, CNRS, Marseille 13397, France
- School of Physical Sciences, University of Kent, Canterbury CT2 7NH, U.K
| | | | - Britta Redlich
- FELIX Laboratory, Radboud University, Nijmegen 6525 ED, The Netherlands
| | - Sergio Ioppolo
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C 8000, Denmark
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, U.K
| |
Collapse
|
6
|
Wagner JC, Hunter KM, Paesani F, Xiong W. Water Capture Mechanisms at Zeolitic Imidazolate Framework Interfaces. J Am Chem Soc 2021; 143:21189-21194. [PMID: 34878776 DOI: 10.1021/jacs.1c09097] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water capture mechanisms of zeolitic imidazolate framework ZIF-90 are revealed by differentiating the water clustering and the center pore filling step, using vibrational sum-frequency generation spectroscopy (VSFG) at a one-micron spatial resolution and state-of-the-art molecular dynamics (MD) simulations. Through spectral line shape comparison between VSFG and IR spectra, the relative humidity dependence of VSFG intensity, and MD simulations, based on MB-pol, we found water clustering and center pore filling happen nearly simultaneously within each pore, with water filling the other pores sequentially. The integration of nonlinear optics with MD simulations provides critical mechanistic insights into the pore filling mechanism and suggests that the relative strength of the hydrogen bonds governs the water uptake mechanisms. This molecular-level detailed mechanism can inform the rational optimization of metal-organic frameworks for water harvesting.
Collapse
Affiliation(s)
- Jackson C Wagner
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Kelly M Hunter
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States.,Materials Science and Engineering Program, University of California, San Diego, California 92093, United States
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States.,Materials Science and Engineering Program, University of California, San Diego, California 92093, United States.,Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, United States
| |
Collapse
|
7
|
Ishiyama T. Energy relaxation dynamics of hydrogen-bonded OH vibration conjugated with free OH bond at an air/water interface. J Chem Phys 2021; 155:154703. [PMID: 34686042 DOI: 10.1063/5.0069618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vibrational energy relaxation dynamics of the excited hydrogen-bonded (H-bonded) OH conjugated with free OH (OD) at an air/water (for both pure water and isotopically diluted water) interface are elucidated via non-equilibrium ab initio molecular dynamics (NE-AIMD) simulations. The calculated results are compared with those of the excited H-bonded OH in bulk liquid water reported previously. In the case of pure water, the relaxation timescale (vibrational lifetime) of the excited H-bonded OH at the interface is T1 = 0.13 ps, which is slightly larger than that in the bulk (T1 = 0.11 ps). Conversely, in the case of isotopically diluted water, the relaxation timescale of T1 = 0.74 ps in the bulk decreases to T1 = 0.26 ps at the interface, suggesting that the relaxation dynamics of the H-bonded OH are strongly dependent on the surrounding H-bond environments particularly for the isotopically diluted conditions. The relaxation paths and their rates are estimated by introducing certain constraints on the vibrational modes except for the target path in the NE-AIMD simulation to decompose the total energy relaxation rate into contributions to possible relaxation pathways. It is found that the main relaxation pathway in the case of pure water is due to intermolecular OH⋯OH vibrational coupling, which is similar to the relaxation in the bulk. In the case of isotopically diluted water, the main pathway is due to intramolecular stretch and bend couplings, which show more efficient relaxation than in the bulk because of strong H-bonding interactions specific to the air/water interface.
Collapse
Affiliation(s)
- Tatsuya Ishiyama
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
8
|
Lineshape analysis of concentrated perchlorate anion aqueous solution with coherence exchange model incorporating multiple bath modes. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|