1
|
Jethwa RB, Mondal S, Pant B, Freunberger SA. To DISP or Not? The Far-Reaching Reaction Mechanisms Underpinning Lithium-Air Batteries. Angew Chem Int Ed Engl 2024; 63:e202316476. [PMID: 38095355 DOI: 10.1002/anie.202316476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 06/11/2024]
Abstract
The short history of research on Li-O2 batteries has seen a remarkable number of mechanistic U-turns over the years. From the initial use of carbonate electrolytes, that were then found to be entirely unsuitable, to the belief that (su)peroxide was solely responsible for degradation, before the more reactive singlet oxygen was found to form, to the hypothesis that capacity depends on a competing surface/solution mechanism before a practically exclusive solution mechanism was identified. Herein, we argue for an ever-fresh look at the reported data without bias towards supposedly established explanations. We explain how the latest findings on rate and capacity limits, as well as the origin of side reactions, are connected via the disproportionation (DISP) step in the (dis)charge mechanism. Therefrom, directions emerge for the design of electrolytes and mediators on how to suppress side reactions and to enable high rate and high reversible capacity.
Collapse
Affiliation(s)
- Rajesh B Jethwa
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Soumyadip Mondal
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Bhargavi Pant
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Stefan A Freunberger
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| |
Collapse
|
2
|
Gao Y, Asahina H, Matsuda S, Noguchi H, Uosaki K. Nature of Li 2O 2 and its relationship to the mechanisms of discharge/charge reactions of lithium-oxygen batteries. Phys Chem Chem Phys 2024; 26:13655-13666. [PMID: 38587036 DOI: 10.1039/d4cp00428k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lithium-air batteries (LABs) are considered one of the most promising energy storage devices because of their large theoretical energy density. However, low cyclability caused by battery degradation prevents its practical use. Thus, to realize practical LABs, it is essential to improve cyclability significantly by understanding how the degradation processes proceed. Here, we used online mass spectrometry for real-time monitoring of gaseous products generated during charging of lithium-oxygen batteries (LOBs), which was operated with pure oxygen not air, with 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) tetraethylene glycol dimethyl ether (TEGDME) electrolyte solution. Linear voltage sweep (LVS) and voltage step modes were employed for charge instead of constant current charge so that the energetics of the product formation during the charge process can be understood more quantitatively. The presence of two distinctly different types of Li2O2, one being decomposed in a wide range of relatively low cell voltages (2.8-4.16 V) (l-Li2O2) and the other being decomposed at higher cell voltages than ca. 4.16 V (h-Li2O2), was confirmed by both LVS and step experiments. H2O generation started when the O2 generation rate reached a first maximum and CO2 generation took place accompanied by the decomposition of h-Li2O2. Based on the above results and the effects of discharge time and the use of isotope oxygen during discharge on product distribution during charge, the generation mechanism of O2, H2O, and CO2 during charging is discussed in relation to the reactions during discharge.
Collapse
Affiliation(s)
- Yanan Gao
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Hitoshi Asahina
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan.
- SoftBank-NIMS Advanced Technologies Development Center, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shoichi Matsuda
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan.
- SoftBank-NIMS Advanced Technologies Development Center, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hidenori Noguchi
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kohei Uosaki
- Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba 305-0044, Japan.
- SoftBank-NIMS Advanced Technologies Development Center, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
3
|
Song LN, Zheng LJ, Wang XX, Kong DC, Wang YF, Wang Y, Wu JY, Sun Y, Xu JJ. Aprotic Lithium-Oxygen Batteries Based on Nonsolid Discharge Products. J Am Chem Soc 2024; 146:1305-1317. [PMID: 38169369 DOI: 10.1021/jacs.3c08656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Aprotic lithium-oxygen (Li-O2) batteries are considered to be a promising alternative option to lithium-ion batteries for high gravimetric energy storage devices. However, the sluggish electrochemical kinetics, the passivation, and the structural damage to the cathode caused by the solid discharge products have greatly hindered the practical application of Li-O2 batteries. Herein, the nonsolid-state discharge products of the off-stoichiometric Li1-xO2 in the electrolyte solutions are achieved by iridium (Ir) single-atom-based porous organic polymers (termed as Ir/AP-POP) as a homogeneous, soluble electrocatalyst for Li-O2 batteries. In particular, the numerous atomic active sites act as the main nucleation sites of O2-related discharge reactions, which are favorable to interacting with O2-/LiO2 intermediates in the electrolyte solutions, owing to the highly similar lattice-matching effect between the in situ-formed Ir3Li and LiO2, achieving a nonsolid LiO2 as the final discharge product in the electrolyte solutions for Li-O2 batteries. Consequently, the Li-O2 battery with a soluble Ir/AP-POP electrocatalyst exhibits an ultrahigh discharge capacity of 12.8 mAh, an ultralow overpotential of 0.03 V, and a long cyclic life of 700 h with the carbon cloth cathode. The manipulation of nonsolid discharge products in aprotic Li-O2 batteries breaks the traditional growth mode of Li2O2, bringing Li-O2 batteries closer to being a viable technology.
Collapse
Affiliation(s)
- Li-Na Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Li-Jun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - De-Chen Kong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yi-Feng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jia-Yi Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
4
|
Liu H, Shen Z, Pan ZZ, Yu W, Nishihara H. Cathode Chemistries of Lithium-Oxygen Batteries in Nanoconfined Space. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40397-40408. [PMID: 37590155 DOI: 10.1021/acsami.3c05944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
In lithium-oxygen batteries, although the porous carbon cathodes are widely utilized to tailor the properties of discharged Li2O2, the impact of nanopore size on the Li2O2 formation and decomposition reactions remain incompletely understood. Here, we provide the straightforward elucidation on the effect of pore size in a range of 25-200 nm, using a highly ordered porous cathode matrix based on the carbon-coated anodic aluminum oxide membrane formed on an Al substrate (C/AAO_Al). When the nanopore size is 25 nm, film-like Li2O2 with a thickness of 2-5 nm is formed, possibly via a surface-driven mechanism. When the nanochannel becomes larger, the Li2O2 film thickness saturates at ca. 10 nm, along with crystalline Li2O2 particles possibly formed by a solution-mediated mechanism.
Collapse
Affiliation(s)
- Hongyu Liu
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Zhaohan Shen
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Zheng-Ze Pan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Wei Yu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
5
|
Sun B, Zheng W, Kang C, Xie B, Qian Z, Wang Y, Ye S, Lou S, Kong F, Mei B, Du C, Zuo P, Xie J, Yin G. Tailoring the p-Band Center of NS Pair for Accelerating High-Performance Lithium-Oxygen Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207461. [PMID: 36861365 DOI: 10.1002/smll.202207461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Indexed: 06/02/2023]
Abstract
The local coordination environment of catalytical moieties directly determines the performance of electrochemical energy storage and conversion devices, such as Li-O2 batteries (LOBs) cathode. However, understanding how the coordinative structure affects the performance, especially for non-metal system, is still insufficient. Herein, a strategy that introduces S-anion to tailor the electronic structure of nitrogen-carbon catalyst (SNC) is proposed to improve the LOBs performance. This study unveils that the introduced S-anion effectively manipulates the p-band center of pyridinic-N moiety, substantially reducing the battery overpotential by accelerating the generation and decomposition of intermediate products Li1-3 O4 . The lower adsorption energy of discharging product Li2 O2 on NS pair accounts for the long-term cyclic stability by exposing the high active area under operation condition. This work demonstrates an encouraging strategy to enhance LOBs performance by modulating the p-band center on non-metal active sites.
Collapse
Affiliation(s)
- Baoyu Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Wei Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Cong Kang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Bingxing Xie
- School of New Energy, Nanjing University of Science and Technology, Jiangyin, 214443, P. R. China
| | - Zhengyi Qian
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yijie Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shanshan Ye
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Shuaifeng Lou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Fanpeng Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - BingBao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai, 200000, P. R. China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Pengjian Zuo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jingying Xie
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai, 200245, P. R. China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
6
|
He Y, Su Y, Qin Y, Ding L, Li X, Mei S, Zhang Y, Ma Y, Wei L, Gu Y, Peng Y, Deng Z. Stepping Up the Kinetics of Li-O 2 Batteries by Shrinking Down the Li 2O 2 Granules through Concertedly Enhanced Catalytic Activity and Photoactivity of Se-Doped LaCoO 3. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9285-9295. [PMID: 36758222 DOI: 10.1021/acsami.2c19975] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Owing to their structural tunability for furnishing high catalytic activity and photoactivity, perovskite oxides are a class of promising materials for high-performance photocathode catalysts in a photoassisted lithium oxygen battery (LOB), which is still in its infancy. Herein, single-crystalline LaCoO3 (LCO) is successfully synthesized through a microwave-assisted approach and selenylated to simultaneously introduce anionic doping and oxygen vacancies, boosting not only the electrocatalytic activity toward reversible Li2O2 formation/decomposition, but also the photoactivity to further reduce the charge/discharge polarization. As a result, LOBs utilizing Se-doped LCO as the photocathode catalyst demonstrate a superior performance under illumination in all aspects of energy efficiency, specific capacity, and cycling stability, ranking among the best reported in the literature for perovskite oxides. The photoenhanced charge kinetics is found to be correlated with the accelerated Li2O2 nucleation with lowered granule size, which is key to both the improved charge/discharge capacity and reversibility. The results underscore the tailoring of perovskite structure to aggrandize both the catalytic activity and photoactivity for concertedly promoting the kinetics of LOBs.
Collapse
Affiliation(s)
- Ying He
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yanhui Su
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yongze Qin
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Leyu Ding
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Xinjian Li
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Shiwei Mei
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yanzhi Zhang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yong Ma
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Le Wei
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yuting Gu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| |
Collapse
|
7
|
Xie Y, Yang L, Wang G, Luo X, Hao H, Wang M, Wang Z, Chen J, Lou F, Xie Q, Wang G. Flexible Three-Dimensional Hierarchical Porous Multifunctional Electrodes for Enhanced Performance by Electrodepositing Perovskite CeFeO 3 on Carbon Foam. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuting Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Liangxuan Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guan Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuejia Luo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huming Hao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Mengyao Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqiang Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianyue Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Fanghui Lou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qingshan Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Guixin Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Lv Q, Zhu Z, Ni Y, Geng J, Li F. Spin‐State Manipulation of Two‐Dimensional Metal–Organic Framework with Enhanced Metal–Oxygen Covalency for Lithium‐Oxygen Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qingliang Lv
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Zhuo Zhu
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Youxuan Ni
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Jiarun Geng
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
9
|
Lv Q, Zhu Z, Ni Y, Geng J, Li F. Spin-State Manipulation of Two-Dimensional Metal-Organic Framework with Enhanced Metal-Oxygen Covalency for Lithium-Oxygen Batteries. Angew Chem Int Ed Engl 2021; 61:e202114293. [PMID: 34921706 DOI: 10.1002/anie.202114293] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/05/2022]
Abstract
Aprotic Li-O 2 battery has attracted extensive attention in the past decade owing to the high theoretical energy density, however it is obstructed by the sluggish reaction kinetics at cathodes and large voltage hysteresis. Herein, we regulate the spin state of partial Ni 2+ metal centers ( t 2g 6 e g 2 ) of conductive nickel catecholate framework (Ni II -NCF) nanowire arrays to high-valence Ni 3+ ( t 2g 6 e g 1 ) for Ni III -NCF. The spin-state modulation enables enhanced nickel-oxygen covalency in Ni III -NCF, which facilitates electron exchange between the Ni sites and oxygen adsorbates and accelerates the oxygen redox kinetics. The high affinity of Ni 3+ sites with the intermediate LiO 2 promotes formation of nanosheet-like Li 2 O 2 in the void space among Ni III -NCF nanowires upon discharging. These merit the Li-O 2 battery based on Ni III -NCF with remarkably reduced discharge/charge voltage gaps, superior rate capability, and long cycling stability of over 200 cycles. This work highlights the domination of electron spin state on the redox kinetics and will shed insights into electronic structure regulation of electrocatalysts for Li-O 2 battery and beyond.
Collapse
Affiliation(s)
- Qingliang Lv
- Nankai University, College of Chemistry, Nankai University, College of Chemistry, 300071, Tianjin, CHINA
| | - Zhuo Zhu
- Nankai University College of Chemistry, College of Chemistry, CHINA
| | - Youxuan Ni
- Nankai University, College of Chemistry, CHINA
| | - Jiarun Geng
- Nankai University College of Chemistry, College of Chemistry, CHINA
| | - Fujun Li
- Nankai University, Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), 94 Weijin Road, 300071, Tianjin, CHINA
| |
Collapse
|
10
|
Nishioka K, Morimoto K, Kusumoto T, Harada T, Kamiya K, Mukouyama Y, Nakanishi S. Isotopic Depth Profiling of Discharge Products Identifies Reactive Interfaces in an Aprotic Li-O 2 Battery with a Redox Mediator. J Am Chem Soc 2021; 143:7394-7401. [PMID: 33945262 DOI: 10.1021/jacs.1c00868] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prior to the practical application of rechargeable aprotic Li-O2 batteries, the high charging overpotentials of these devices (which inevitably cause irreversible parasitic reactions) must be addressed. The use of redox mediators (RMs) that oxidatively decompose the discharge product, Li2O2, is one promising solution to this problem. However, the mitigating effect of RMs is currently insufficient, and so it would be beneficial to clarify the Li2O2 reductive growth and oxidative decomposition mechanisms. In the present work, Nanoscale secondary ion mass spectrometry (Nano-SIMS) isotopic three-dimensional imaging and differential electrochemical mass spectrometry (DEMS) analyses of individual Li2O2 particles established that both growth and decomposition proceeded at the Li2O2/electrolyte interface in a system containing the Br-/Br3- redox couple as the RM. The results of this study also indicated that the degree of oxidative decomposition of Li2O2 was highly dependent on the cell voltage. These data show that increasing the RM reaction rate at the Li2O2/electrolyte interface is critical to improve the cycle life of Li-O2 batteries.
Collapse
Affiliation(s)
- Kiho Nishioka
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kota Morimoto
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takayoshi Kusumoto
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Takashi Harada
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kazuhide Kamiya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yoshiharu Mukouyama
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Division of Science, College of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan
| | - Shuji Nakanishi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.,Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|