1
|
Labella J, López-Serrano E, Aranda D, Mayoral MJ, Ortí E, Torres T. The key role of chirality and peripheral substitution in the columnar organization of bowl-shaped subphthalocyanines. Chem Sci 2024; 15:13760-13767. [PMID: 39211501 PMCID: PMC11352688 DOI: 10.1039/d4sc03976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The columnar arrangement of bowl-shaped aromatics is a promising strategy for producing high-performing semiconductors. However, the structural factors that dictate the self-assembly of these molecules remain poorly understood. Herein, we show how chirality and peripheral substitution affect the columnar assembly of subphthalocyanines (SubPcs) in solution. Both aspects are found to influence the structure, stability, and formation mechanism of the supramolecular polymer obtained. Whereas enantiopure tri-substituted SubPcs cooperatively polymerize into homochiral head-to-tail arrays, racemic mixtures socially self-sort, leading to heterochiral columnar polymers. In sharp contrast, hexa-substituted SubPcs polymerize following an isodesmic mechanism, producing highly robust columnar systems. As elucidated by molecular dynamics calculations, the conformational flexibility of these SubPcs, as well as the number of peripheral groups able to intermolecularly interact, underlie these significant differences. The results presented herein pave the way for the realistic application of bowl-shaped π-compounds.
Collapse
Affiliation(s)
- Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid Campus de Cantoblanco, C/Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Elisa López-Serrano
- Department of Organic Chemistry, Universidad Autónoma de Madrid Campus de Cantoblanco, C/Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Daniel Aranda
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia 46980 Paterna Spain
- Andalucía Tech, Facultad de Ciencias, Departamento de Química Física, Universidad de Málaga 29071 Málaga Spain
| | - María J Mayoral
- Inorganic Chemistry Department, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia 46980 Paterna Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid Campus de Cantoblanco, C/Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid Spain
- IMDEA - Nanociencia C/Faraday 9, Campus de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
2
|
Das A, Ghosh S, George SJ. Amplification and Attenuation of Asymmetry via Kinetically Controlled Seed-Induced Supramolecular Polymerization. Angew Chem Int Ed Engl 2024:e202413747. [PMID: 39172958 DOI: 10.1002/anie.202413747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
The amplification of asymmetry in supramolecular polymers has recently garnered significant attention. While asymmetry amplification has predominantly been explored under thermodynamic conditions, the kinetic aspect of this process unveils intriguing observations, yet is scarcely reported in the literature. Herein, drawing inspiration from macromolecular systems, we propose a novel strategy for enhancing asymmetry in supramolecular polymers through a seed-induced supramolecular polymerization approach under kinetic conditions, employing a naphthalene diimide-derived monomer (ANSG) for template-induced supramolecular polymerization, utilizing adenosine triphosphate (ATP) and pyrophosphate (PPi) as templates. A chiral seed comprising [ANSG-ATP]S effectively amplifies the overall supramolecular asymmetry when exposed to a mixture of achiral templates (PPi) and monomers (ANSG), owing to its efficient seeding characteristics under kinetic conditions. As a result of efficient co-operativity, conversely, employing an achiral seed [ANSG-PPi]S in a mixture of chiral templates (ATP) and monomers (ANSG) results in the attenuation of asymmetry, highlighting the effective modulation achievable through the seeding approach, an unprecedented observation in the field. Exploiting the efficient aggregation-induced emission enhancement (AIEE) of the resultant supramolecular polymers further extends the amplification and attenuation of circularly polarized luminescence (CPL) as a potential function.
Collapse
Affiliation(s)
- Angshuman Das
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Saikat Ghosh
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
3
|
Veedu RM, Fernández Z, Bäumer N, Albers A, Fernández G. Pathway-dependent supramolecular polymerization by planarity breaking. Chem Sci 2024; 15:10745-10752. [PMID: 39027305 PMCID: PMC11253169 DOI: 10.1039/d4sc02499k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
In controlled supramolecular polymerization, planar π-conjugated scaffolds are commonly used to predictably regulate stacking interactions, with various assembly pathways arising from competing interactions involving side groups. However, the extent to which the nature of the chromophore itself (planar vs. non-planar) affects pathway complexity requires clarification. To address this question, we herein designed a new BOPHY dye 2, where two oppositely oriented BF2 groups induce a disruption of planarity, and compared its supramolecular polymerization in non-polar media with that of a previously reported planar BODIPY 1 bearing identical substituents. The slightly non-planar structure of the BOPHY dye 2, as evident in previously reported X-ray structures, together with the additional out-of-plane BF2 group, allow for more diverse stacking possibilities leading to two fiber-like assemblies (kinetic 2A and thermodynamic 2B), in contrast to the single assembly previously observed for BODIPY 1. The impact of the less rigid, preorganized BOPHY core compared to the planar BODIPY counterpart is also reflected in the stronger tendency of the former to form anisotropic assemblies as a result of more favorable hydrogen bonding arrays. The structural versatility of the BOPHY core ultimately enables two stable packing arrangements: a kinetically controlled antiparallel face-to-face stacking (2A), and a thermodynamically controlled parallel slipped packing (2B) stabilized by (BF2) F⋯H (meso) interactions. Our findings underscore the significance of planarity breaking and out-of-plane substituents on chromophores as design elements in controlled supramolecular polymerization.
Collapse
Affiliation(s)
- Rasitha Manha Veedu
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Zulema Fernández
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Nils Bäumer
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Antonia Albers
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut Corrensstraße 36 Münster 48149 Germany
| |
Collapse
|
4
|
Li L, Zheng R, Sun R. Understanding multicomponent low molecular weight gels from gelators to networks. J Adv Res 2024:S2090-1232(24)00126-7. [PMID: 38570015 DOI: 10.1016/j.jare.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/11/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The construction of gels from low molecular weight gelators (LMWG) has been extensively studied in the fields of bio-nanotechnology and other fields. However, the understanding gaps still prevent the prediction of LMWG from the full design of those gel systems. Gels with multicomponent become even more complicated because of the multiple interference effects coexist in the composite gel systems. AIM OF REVIEW This review emphasizes systems view on the understanding of multicomponent low molecular weight gels (MLMWGs), and summarizes recent progress on the construction of desired networks of MLMWGs, including self-sorting and co-assembly, as well as the challenges and approaches to understanding MLMWGs, with the hope that the opportunities from natural products and peptides can speed up the understanding process and close the gaps between the design and prediction of structures. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key concepts. Firstly, understanding the complicated multicomponent gels systems requires a systems perspective on MLMWGs. Secondly, several protocols can be applied to control self-sorting and co-assembly behaviors in those multicomponent gels system, including the certain complementary structures, chirality inducing and dynamic control. Thirdly, the discussion is anchored in challenges and strategies of understanding MLMWGs, and some examples are provided for the understanding of multicomponent gels constructed from small natural products and subtle designed short peptides.
Collapse
Affiliation(s)
- Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Rongqin Sun
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
5
|
Gallego L, Woods JF, Butti R, Szwedziak P, Vargas Jentzsch A, Rickhaus M. Shape-Assisted Self-Assembly of Hexa-Substituted Carpyridines into 1D Supramolecular Polymers. Angew Chem Int Ed Engl 2024; 63:e202318879. [PMID: 38237056 DOI: 10.1002/anie.202318879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The extent of the influence that molecular curvature plays on the self-assembly of supramolecular polymers remains an open question in the field. We began addressing this fundamental question with the introduction of "carpyridines", which are saddle-shaped monomers that can associate with one another through π-π interactions and in which the rotational and translational movements are restricted. The topography displayed by the monomers led, previously, to the assembly of highly ordered 2D materials even in the absence of strong directional interactions such as hydrogen bonding. Here, we introduce a simple strategy to gain control over the dimensionality of the formed structures yielding classical unidimensional polymers. These have been characterized using well-established protocols allowing us to determine and confirm the self-assembly mechanism of both fibers and sheets. The calculated interaction energies are significantly higher than expected for flexible self-assembling units lacking classical "strong" non-covalent interactions. The versatility of this supramolecular unit to assemble into either supramolecular fibers or 2D sheets with strong association energies highlights remarkably well the potential and importance of molecular shape for the design of supramolecular materials and the applications thereof.
Collapse
Affiliation(s)
- Lucía Gallego
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Joseph F Woods
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachele Butti
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Piotr Szwedziak
- Centre for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Andreas Vargas Jentzsch
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, Rue du Loess 23, 67200, Strasbourg, France
| | - Michel Rickhaus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, 1205, Geneva, Switzerland
| |
Collapse
|
6
|
Zheng Z, Wang B, Li Z, Hao H, Wei C, Luo W, Jiao L, Zhang S, Zhou B, Ma X. Enhanced Charge Transfer via S-Scheme Heterojunction Interface Engineering of Supramolecular SubPc-Br/UiO-66 Arrays for Efficient Photocatalytic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306820. [PMID: 37802970 DOI: 10.1002/smll.202306820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Constructing heterojunction of supramolecular arrays self-assembled on metal-organic frameworks (MOFs) with elaborate charge transfer mechanisms is a promising strategy for the photocatalytic oxidation of organic pollutants. Herein, H12 SubPcB-Br (SubPc-Br) and UiO-66 are used to obtain the step-scheme (S-scheme) heterojunction SubPc-Br/UiO-66 for the first time, which is then applied in the photocatalytic oxidation of minocycline. Atomic-level B-O-Zr charge-transfer channels and van der Waals force connections synergistically accelerated the charge transfer at the interface of the SubPc-Br/UiO-66 heterojunction, while the establishment of the B-O-Zr bonds also led to the directional transfer of charge from SubPc-Br to UiO-66. The synergy is the key to improving the photocatalytic activity and stability of SubPc-Br/UiO-66, which is also verified by various characterization methods and theoretical calculations. The minocycline degradation efficiency of supramolecular SubPc-Br/UiO-66 arrays reach 90.9% within 30 min under visible light irradiation. The molecular dynamics simulations indicate that B-O-Zr bonds and van der Waals force contribute significantly to the stability of the SubPc-Br/UiO-66 heterojunction. This work reveals an approach for the rational design of semiconducting MOF-based heterojunctions with improved properties.
Collapse
Affiliation(s)
- Zheng Zheng
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Bing Wang
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Zhuo Li
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Hong Hao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - ChaoYang Wei
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - WenYu Luo
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - LinYu Jiao
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Sheng Zhang
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Bo Zhou
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, 710069, China
| | - XiaoXun Ma
- School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| |
Collapse
|
7
|
Sarkar S, Laishram R, Deb D, George SJ. Controlled Noncovalent Synthesis of Secondary Supramolecular Polymers. J Am Chem Soc 2023; 145:22009-22018. [PMID: 37754784 DOI: 10.1021/jacs.3c06844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Dynamic supramolecular polymers, with their functional similarities to classical covalent polymers and their adaptive and self-repairing nature reminiscent of biological assemblies, have emerged as highly promising systems for the design of smart soft materials. Recent advancements in mechanistic investigations and novel synthetic strategies, such as living supramolecular polymerization, have significantly enhanced our ability to control the primary structure of these supramolecular polymers. However, realizing their full functional potential requires expanding their topological diversity in a manner akin to classical polymers as well as achieving precise molecular organization at higher hierarchical levels of self-assembly. In this paper, we present a remarkable advancement in this field, introducing an unprecedented and controlled synthesis of secondary supramolecular polymers. Our innovative strategy combines chirality-controlled surface-catalyzed secondary nucleation and a bioinspired peptide design, effectively stabilizing higher-order assembly. Furthermore, by harnessing this stereoselective nucleation process, we demonstrate the successful synthesis of racemic supramolecular polymers featuring parallelly stacked conglomerate microstructures─a previously unreported topology in synthetic self-assembled systems. Additionally, we elucidate that the extent of secondary supramolecular polymers can be regulated by modulating the enantiomeric excess of the chiral monomers. Consequently, our study unveils new topologies that exhibit enhanced higher-order structural complexity in the realm of supramolecular polymers.
Collapse
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Raju Laishram
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Darshana Deb
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| |
Collapse
|
8
|
Naranjo C, Doncel-Giménez A, Gómez R, Aragó J, Ortí E, Sánchez L. Solvent-dependent self-assembly of N-annulated perylene diimides. From dimers to supramolecular polymers. Chem Sci 2023; 14:9900-9909. [PMID: 37736635 PMCID: PMC10510848 DOI: 10.1039/d3sc03372d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
The synthesis and self-assembling features of the N-annulated perylene diimide (NPBI) 1 in different solvents are reported. Compound 1 possesses two chiral linkers, derived from (S)-(+)-alaninol, that connect the central aromatic NPBI segment and the peripheral trialkoxybenzamide units. The Ala-based linker has been demonstrated to strongly favor the formation of intramolecularly H-bonded seven-membered pseudocycles. NPBI 1 shows a strong tendency to self-assemble even in a good solvent like CHCl3 and the formation of chiral dimers is detected in this good solvent. Both experimental techniques and theoretical calculations reveal that the intramolecular H-bonded pseudocycles are very robust and the formation of chiral dimers is driven by the π-stacking of two units of the NPBI core. Unexpectedly, an efficient transfer of the asymmetry of the point chirality at the linker to the aromatic moiety is observed in the molecularly dissolved state. Changing the solvent to more apolar methylcyclohexane modifies the self-assembly process and the formation of chiral supramolecular polymers is detected. The supramolecular polymerization of 1 is demonstrated to follow an isodesmic mechanism unlike previous referable systems. In the formation of the supramolecular polymers of 1, the combination of experimental and computational data indicates that the H-bonded pseudocycles are also present in the aggregated state and the rope-like, columnar aggregates formed by the self-assembly of 1 rely on the π-stacking of the NPBI backbones.
Collapse
Affiliation(s)
- Cristina Naranjo
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Azahara Doncel-Giménez
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia C/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia C/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia C/Catedrático José Beltrán, 2 46980 Paterna Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
9
|
Gómez-Gómez M, Labella J, Torres T. Borylated Subphthalocyanines: Versatile Precursors for the Preparation of Functional Bowl-Shaped Aromatics. Chemistry 2023; 29:e202301782. [PMID: 37350310 DOI: 10.1002/chem.202301782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/24/2023]
Abstract
The peripheral borylation of porphyrinoids has become a key step to prepare advanced functional materials. This study reports the synthesis, electronic properties, and reactivity of borylated subphthalocyanines. These compounds, which are prepared by Suzuki-Miyaura borylation in excellent yields, are easily purified, display a great stability, and serve as powerful starting materials for the post-functionalization of SubPcs via cross-coupling reactions. Remarkably, this novel approach is more efficient than the methodologies already described and enables the preparation of exotic systems, such as SubPc dimeric species linked by C-C bonds, which are not accessible so far and present promising properties for optoelectronic devices.
Collapse
Affiliation(s)
- Marta Gómez-Gómez
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/ Francisco Tomás y Valiente 7, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
- IMDEA - Nanociencia, C/ Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
10
|
González-Sánchez M, Mayoral MJ, Vázquez-González V, Paloncýová M, Sancho-Casado I, Aparicio F, de Juan A, Longhi G, Norman P, Linares M, González-Rodríguez D. Stacked or Folded? Impact of Chelate Cooperativity on the Self-Assembly Pathway to Helical Nanotubes from Dinucleobase Monomers. J Am Chem Soc 2023; 145:17805-17818. [PMID: 37531225 PMCID: PMC10436278 DOI: 10.1021/jacs.3c04773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/04/2023]
Abstract
Self-assembled nanotubes exhibit impressive biological functions that have always inspired supramolecular scientists in their efforts to develop strategies to build such structures from small molecules through a bottom-up approach. One of these strategies employs molecules endowed with self-recognizing motifs at the edges, which can undergo either cyclization-stacking or folding-polymerization processes that lead to tubular architectures. Which of these self-assembly pathways is ultimately selected by these molecules is, however, often difficult to predict and even to evaluate experimentally. We show here a unique example of two structurally related molecules substituted with complementary nucleobases at the edges (i.e., G:C and A:U) for which the supramolecular pathway taken is determined by chelate cooperativity, that is, by their propensity to assemble in specific cyclic structures through Watson-Crick pairing. Because of chelate cooperativities that differ in several orders of magnitude, these molecules exhibit distinct supramolecular scenarios prior to their polymerization that generate self-assembled nanotubes with different internal monomer arrangements, either stacked or coiled, which lead at the same time to opposite helicities and chiroptical properties.
Collapse
Affiliation(s)
- Marina González-Sánchez
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María J. Mayoral
- Department
of Inorganic Chemistry, Universidad Complutense
de Madrid, 28040 Madrid, Spain
| | - Violeta Vázquez-González
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Markéta Paloncýová
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký
University Olomouc, 779 00 Olomouc, Czech Republic
| | - Irene Sancho-Casado
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fátima Aparicio
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto de Juan
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giovanna Longhi
- Department
of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Patrick Norman
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mathieu Linares
- Laboratory
of Organic Electronics and Scientific Visualization Group, ITN, Campus
Norrköping; Swedish e-Science Research Centre (SeRC), Linköping University, 58183 Linköping, Sweden
| | - David González-Rodríguez
- Nanostructured
Molecular Systems and Materials Group, Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad
Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
11
|
Shen Y, Su R, Hao D, Xu X, Reches M, Min J, Chang H, Yu T, Li Q, Zhang X, Wang Y, Wang Y, Qi W. Enzymatic polymerization of enantiomeric L-3,4-dihydroxyphenylalanine into films with enhanced rigidity and stability. Nat Commun 2023; 14:3054. [PMID: 37237008 DOI: 10.1038/s41467-023-38845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
L-3,4-dihydroxyphenylalanine is an important molecule in the adhesion of mussels, and as an oxidative precursor of natural melanin, it plays an important role in living system. Here, we investigate the effect of the molecular chirality of 3,4-dihydroxyphenylalanine on the properties of the self-assembled films by tyrosinase-induced oxidative polymerization. The kinetics and morphology of pure enantiomers are completely altered upon their co-assembly, allowing the fabrication of layer-to-layer stacked nanostructures and films with improved structural and thermal stability. The different molecular arrangements and self-assembly mechanisms of the L+D-racemic mixtures, whose oxidation products have increased binding energy, resulting in stronger intermolecular forces, which significantly increases the elastic modulus. This study provides a simple pathway for the fabrication of biomimetic polymeric materials with enhanced physicochemical properties by controlling the chirality of monomers.
Collapse
Affiliation(s)
- Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, 300072, Tianjin, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
| | - Dongzhao Hao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Xiaojian Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Meital Reches
- Institute of Chemistry, the Hebrew University, Jerusalem, 91904, Israel
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Heng Chang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Tao Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Xiaoyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, 301617, Tianjin, China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China.
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, 300072, Tianjin, P. R. China.
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, 215123, Suzhou, China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China.
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, 300072, Tianjin, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China.
| |
Collapse
|
12
|
Labella J, Torres T. Subphthalocyanines: contracted porphyrinoids with expanded applications. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Saito T, Kajitani T, Yagai S. Amplification of Molecular Asymmetry during the Hierarchical Self-Assembly of Foldable Azobenzene Dyads into Nanotoroids and Nanotubes. J Am Chem Soc 2023; 145:443-454. [PMID: 36574732 DOI: 10.1021/jacs.2c10631] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The amplification of molecular asymmetry through self-assembly is a phenomenon that not only comprehends the origin of homochirality in nature but also produces chiroptically active functional materials from molecules with minimal enantiomeric purity. Understanding how molecular asymmetry can be transferred and amplified into higher-order structures in a hierarchical self-assembly system is important but still unexplored. Herein, we present an intriguing example of the amplification of molecular asymmetry in hierarchically self-assembled nanotubes that feature discrete and isolatable toroidal intermediates. The hierarchical self-assembly is initiated via asymmetric intramolecular folding of scissor-shaped azobenzene dyads furnished with chiral side chains. When scalemic mixtures of the enantiomers are dissolved in a non-polar solvent and cooled to 20 °C, single-handed nanotoroids are formed, as confirmed using atomic force microscopy and circular dichroism analyses. A strong majority-rules effect at the nanotoroid level is observed and can be explained by a low mismatch penalty and a high helix-reversal penalty. The single-handed nanotoroids stack upon cooling to 0 °C to exclusively afford their respective single-handed nanotubes. Thus, the same degree of amplification of molecular asymmetry is realized at the nanotube level. The internal packing efficiency of molecules within nanotubes prepared from the pure enantiomers or their scalemic mixtures is likely different, as suggested by the absence of higher-order structure (supercoil) formation in the latter. X-ray diffraction analysis of the anisotropically oriented nanotube films revealed looser molecular packing within the scalemic nanotubes, which clearly reflects the lower enantiomeric purity of their internal chiral side chains.
Collapse
Affiliation(s)
- Takuho Saito
- Division of Advanced Science and Engineering, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Kajitani
- Open Facility development office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
14
|
Zhou S, Lv X, Li M, Gao Z, Tu S, Qiao S, Mo M, Tang X, Wang Y, Sun S. Synthesis, Optical Properties, and Fluorescence Cell Imaging of Novel Mixed Fluorinated Subphthalocyanines. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020725. [PMID: 36677782 PMCID: PMC9866271 DOI: 10.3390/molecules28020725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Abstract
Subphthalocyanines (SubPcs) are a kind of tripyrrolic macrocycle with a boron atom at their core. Incorporating different units onto the SubPc periphery can endow them with various unique properties. Herein, a series of novel fluorinated low-symmetry SubPc derivatives containing chlorine groups (F8-Cl4-SubPc, F4-Cl8-SubPc) and methoxy groups (F8-(OCH3)2-SubPc) were synthesized and characterized by spectral methods (MS, FT-IR, 1H, 13C, 11B, and 19F NMR spectroscopy), and the effect of the peripheral substituents on their electronic structure of low-symmetry macrocycle was investigated by cyclic voltammetry, theoretical calculation, electronic absorption, and emission spectroscopy. In contrast to perfluorinated SubPcs, these low-symmetry SubPcs revealed non-degenerate LUMO and LUMO + 1 orbitals, especially F8-(OCH3)2-SubPc, which was consistent with the split Q-band absorptions. The cyclic voltammetry revealed that these SubPcs exhibited two or three reduction waves and one oxidation wave, which is consistent with the reported SubPcs. Finally, an intracellular fluorescence imaging study of these compounds revealed that these compounds could enter cancer cells and be entrapped in the lysosomes, which provides a possibility of future applications in lysosome fluorescence imaging and targeting.
Collapse
Affiliation(s)
- Shutong Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minghui Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China
| | - Zijian Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China
| | - Shengnan Tu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China
| | - Shanshan Qiao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China
| | - Mengjia Mo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China
| | - Xu Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yemei Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China
- Correspondence: (Y.W.); (S.S.); Tel.: +86-153-6599-6930 (Y.W.)
| | - Shasha Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China
- Correspondence: (Y.W.); (S.S.); Tel.: +86-153-6599-6930 (Y.W.)
| |
Collapse
|
15
|
Labella J, Lavarda G, Hernández-López L, Aguilar-Galindo F, Díaz-Tendero S, Lobo-Checa J, Torres T. Preparation, Supramolecular Organization, and On-Surface Reactivity of Enantiopure Subphthalocyanines: From Bulk to 2D-Polymerization. J Am Chem Soc 2022; 144:16579-16587. [PMID: 36052724 PMCID: PMC9479063 DOI: 10.1021/jacs.2c06377] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of chiral materials is severely limited by the challenge to achieve enantiopure derivatives with both configurational stability and good optoelectronic properties. Herein we demonstrate that enantiopure subphthalocyanines (SubPcs) fulfill such demanding requirements and bear the prospect of becoming components of chiral technologies. Particularly, we describe the synthesis of enantiopure SubPcs and assess the impact of chirality on aspects as fundamental as the supramolecular organization, the behavior in contact with metallic surfaces, and the on-surface reactivity and polymerization. We find that enantiopure SubPcs remarkably tend to organize in columnar polar assemblies at the solid state and highly ordered chiral superstructures on Au(111) surfaces. At the metal interface, such SubPcs are singled out by scanning tunneling microscopy. DFT calculations suggest that SubPcs undergo a bowl-to-bowl inversion that was shown to be dependent on the axial substituent. Finally, we polymerize by means of on-surface synthesis a highly regular 2D, porous and chiral, π-extended polymer that paves the way to future nanodevice fabrication.
Collapse
Affiliation(s)
- Jorge Labella
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Giulia Lavarda
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Leyre Hernández-López
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Fernando Aguilar-Galindo
- Donostia International Physics Center (DIPC), Donostia-San Sebastián 20018, Spain.,Departamento de Química, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Sergio Díaz-Tendero
- Departamento de Química, Universidad Autónoma de Madrid, Madrid 28049, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jorge Lobo-Checa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.,Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid 28049, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain.,IMDEA Nanociencia, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
16
|
Labella J, Momblona C, Čulík P, López-Serrano E, Kanda H, Nazeeruddin MK, Torres T. Modulating the Electron Transporting Properties of Subphthalocyanines for Inverted Perovskite Solar Cells. Front Chem 2022; 10:886522. [PMID: 35910737 PMCID: PMC9329656 DOI: 10.3389/fchem.2022.886522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The lack of organic non-fullerene ETMs with good electron transport and device stability is an important problem for the further development and commercialization of perovskite solar cells. Herein, the use of SubPcs as ETMs in PSCs is explored. To this end, we analyze the influence of SubPc peripheral functionalization on the efficiency and stability of p-i-n PSCs. Specifically, ETMs based on three SubPcs (with either six or twelve peripheral fluorine and chlorine atoms) have been incorporated into PSCs with the perovskite layer deposited by solution processing (CsFAMAPbIBr). The device performance and morphology of these devices are deeply analyzed using several techniques, and the interfacial effects induced by the SubPcs are studied using photoluminescence and TR-PL. It is observed that the device stability is significantly improved upon insertion the SubPc layer. Moreover, the impact of the SubPc layer-thickness is assessed. Thus, a maximum power conversion efficiency of 13.6% was achieved with the champion device.
Collapse
Affiliation(s)
- Jorge Labella
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Momblona
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Sion, Switzerland
| | - Pavel Čulík
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Sion, Switzerland
| | - Elisa López-Serrano
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Hiroyuki Kanda
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Sion, Switzerland
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL Valais Wallis), Sion, Switzerland
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, Spain
- IMDEA-Nanociencia, Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
17
|
Liao R, Wang F, Guo Y, Han Y, Wang F. Chirality-Controlled Supramolecular Donor-Acceptor Copolymerization with Distinct Energy Transfer Efficiency. J Am Chem Soc 2022; 144:9775-9784. [PMID: 35621014 DOI: 10.1021/jacs.2c02270] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chirality delivers substantial value to the field of supramolecular polymers, not only serving as a probe to monitor the dynamic assembly process but providing access to chiroptical materials. The current study demonstrates that, for supramolecular donor-acceptor copolymers, their comonomer organization modes can be greatly influenced by stereocommunication at the molecular level. The enantiopure N-[(1R or 1S)-phenylethyl]benzamides are incorporated into two structurally similar comonomers, locating between the π-aromatic diethynylacene core and the alkyl chain peripheries. Parallel arrangement of the stereogenic methyl units brings steric hindrance between the homochiral comonomers, which is relieved for the heterochiral comonomers due to the adoption of staggered arrangement. It consequently steers randomly mixed organization for the homochiral supramolecular copolymers within the nanofibers. In comparison, the heterochiral counterparts form nanoparticles in an alternate donor-acceptor organization manner. The variation of comonomer arrangement modes gives rise to distinct energy transfer efficiency at the supramolecular level. Overall, the elaborate manipulation of stereogenic centers in the comonomer structures exerts significant impacts on the characteristics of supramolecular copolymers, which could be useful for chiral sensing, recognition, and optoelectronic applications.
Collapse
Affiliation(s)
- Rui Liao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Fan Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yuchen Guo
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yifei Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
18
|
Ogura Y, Nakano M, Maeda H, Segi M, Furuyama T. Cationic Axial Ligand Effects on Sulfur-Substituted Subphthalocyanines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092766. [PMID: 35566117 PMCID: PMC9105831 DOI: 10.3390/molecules27092766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Herein, we report the synthesis of sulfur-substituted boron(III) subphthalocyanines (SubPcs) with cationic axial ligands. Subphthalocyanines were synthesized by a condensation reaction using the corresponding phthalonitriles and boron trichloride as a template. An aminoalkyl group was introduced on the central boron atom; this process was followed by N-methylation to introduce a cationic axial ligand. The peripheral sulfur groups shifted the Q band of SubPcs to a longer wavelength. The cationic axial ligands increased the polarity and enhanced the hydrophilicity of SubPcs. The effect of axial ligands on absorption and fluorescence properties is generally small. However, a further red shift was observed by introducing cationic axial ligands into the sulfur-substituted SubPcs. This change is similar to that in sulfur-substituted silicon(IV) phthalocyanines. The unique effect of the cationic axial ligand was extensively investigated by theoretical calculations and electrochemistry. In particular, the precise oxidation potential was determined using ionization potential measurements. Thus, the results of the present study provide a novel strategy for developing functional dyes and pigments based on SubPcs.
Collapse
Affiliation(s)
- Yusaku Ogura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.O.); (M.N.); (H.M.); (M.S.)
| | - Masahiro Nakano
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.O.); (M.N.); (H.M.); (M.S.)
| | - Hajime Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.O.); (M.N.); (H.M.); (M.S.)
| | - Masahito Segi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.O.); (M.N.); (H.M.); (M.S.)
| | - Taniyuki Furuyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; (Y.O.); (M.N.); (H.M.); (M.S.)
- Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Correspondence:
| |
Collapse
|
19
|
Liu Q, Jin B, Li Q, Yang H, Luo Y, Li X. Self-sorting assembly of artificial building blocks. SOFT MATTER 2022; 18:2484-2499. [PMID: 35266949 DOI: 10.1039/d2sm00153e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly to build high-level structures, which is ubiquitous in living systems, has captured the imagination of scientists, striving to emulate the intricacy, homogeneity and versatility of the naturally occurring systems, and to pursue a similar level of organization in artificial building blocks. In particular, self-sorting assembly in multicomponent systems, based on the spontaneous recognition and consequent spatial aggregation of the same or interactive building units, is able to realize very complicated assembly behaviours, and usually results in multiple well-ordered products or hierarchical structures in a one-step manner. This highly efficient assembly strategy has attracted tremendous research attention in recent years, and numerous examples have been reported in artificial systems, particularly with supramolecular and polymeric building blocks. In the current review, we summarize the progress in recent years, and classify them into five main categories, based on their working mechanisms or principles. With the review of these strategies, we hope to provide not only some deep insights into this field, but also and more importantly, useful thoughts in the design and fabrication of self-sorting systems in the future.
Collapse
Affiliation(s)
- Qianwei Liu
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Bixin Jin
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Qin Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Huanzhi Yang
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Yunjun Luo
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
| | - Xiaoyu Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
- Experimental Centre of Advanced Materials, Beijing Institute of China, Beijing 100081, People's Republic of China
| |
Collapse
|
20
|
Serrano-Molina D, Montoro-García C, Mayoral MJ, de Juan A, González-Rodríguez D. Self-Sorting Governed by Chelate Cooperativity. J Am Chem Soc 2022; 144:5450-5460. [PMID: 35311263 PMCID: PMC8972263 DOI: 10.1021/jacs.1c13295] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Self-sorting
phenomena are the basis of manifold relevant (bio)chemical
processes where a set of molecules is able to interact with no interference
from other sets and are ruled by a number of codes that are programmed
in molecular structures. In this work, we study, the relevance of
chelate cooperativity as a code for achieving high self-sorting fidelities.
In particular, we establish qualitative and quantitative relationships
between the cooperativity of a cyclic system and the self-sorting
fidelity when combined with other molecules that share identical geometry
and/or binding interactions. We demonstrate that only systems displaying
sufficiently strong chelate cooperativity can achieve quantitative
narcissistic self-sorting fidelities either by dictating the distribution
of cyclic species in complex mixtures or by ruling the competition
between the intra- and intermolecular versions of a noncovalent interaction.
Collapse
Affiliation(s)
- David Serrano-Molina
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carlos Montoro-García
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María J. Mayoral
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alberto de Juan
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - David González-Rodríguez
- Nanostructured Molecular Systems and Materials Group, Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
21
|
Controlling the length of porphyrin supramolecular polymers via coupled equilibria and dilution-induced supramolecular polymerization. Nat Commun 2022; 13:248. [PMID: 35017511 PMCID: PMC8752679 DOI: 10.1038/s41467-021-27831-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Multi-component systems often display convoluted behavior, pathway complexity and coupled equilibria. In recent years, several ways to control complex systems by manipulating the subtle balances of interaction energies between the individual components have been explored and thereby shifting the equilibrium between different aggregate states. Here we show the enantioselective chain-capping and dilution-induced supramolecular polymerization with a Zn2+-porphyrin-based supramolecular system when going from long, highly cooperative supramolecular polymers to short, disordered aggregates by adding a monotopic Mn3+-porphyrin monomer. When mixing the zinc and manganese centered monomers, the Mn3+-porphyrins act as chain-cappers for Zn2+-porphyrin supramolecular polymers, effectively hindering growth of the copolymer and reducing the length. Upon dilution, the interaction between chain-capper and monomers weakens as the equilibria shift and long supramolecular polymers form again. This dynamic modulation of aggregate morphology and length is achieved through enantioselectivity in the aggregation pathways and concentration-sensitive equilibria. All-atom and coarse-grained molecular simulations provide further insights into the mixing of the species and their exchange dynamics. Our combined experimental and theoretical approach allows for precise control of molecular self-assembly and chiral discrimination in complex systems.
Collapse
|
22
|
Lavarda G, Labella J, Martínez-Díaz MV, Rodríguez-Morgade MS, Osuka A, Torres T. Recent advances in subphthalocyanines and related subporphyrinoids. Chem Soc Rev 2022; 51:9482-9619. [DOI: 10.1039/d2cs00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subporphyrinoids constitute a class of extremely versatile and attractive compounds. Herein, a comprehensive review of the most recent advances in the fundamentals and applications of these cone-shaped aromatic macrocycles is presented.
Collapse
Affiliation(s)
- Giulia Lavarda
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Victoria Martínez-Díaz
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Salomé Rodríguez-Morgade
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Atsuhiro Osuka
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
23
|
Henderson WR, Liu G, Abboud KA, Castellano RK. Tuning Supramolecular Polymer Assembly through Stereoelectronic Interactions. J Am Chem Soc 2021; 143:12688-12698. [PMID: 34346675 DOI: 10.1021/jacs.1c05522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The supramolecular polymerization of 2,11-dithia[3.3]paracyclophanes through self-complementary intermolecular and transannular amide hydrogen bonding is presented. An n → π* interaction between the amide hydrogen bonding units and the central bridging atom results from the single-point exchange of a carbon atom for a sulfur atom. This orbital donor-acceptor interaction can be strengthened by oxidizing the sulfide to a sulfone which acts to shorten the donor···acceptor distance and increase orbital overlap. Experimental signatures of the increased n → π* interaction include larger isodesmic polymerization elongation constants in solution, changes in characteristic bond stretching frequencies, and geometric/structural changes evaluated by X-ray crystallography. The experimental data are supported by extensive computational investigations of both assembling and nonassembling 2,11-dithia[3.3]paracyclophanes as well as a rationally designed model system to confirm the role of stereoelectronic effects on supramolecular polymer assembly.
Collapse
Affiliation(s)
- Will R Henderson
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200 Gainesville, Florida 32611-7200, United States
| | - Guancen Liu
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200 Gainesville, Florida 32611-7200, United States
| | - Khalil A Abboud
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200 Gainesville, Florida 32611-7200, United States
| | - Ronald K Castellano
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200 Gainesville, Florida 32611-7200, United States
| |
Collapse
|
24
|
Sarkar S, Sarkar A, Som A, Agasti SS, George SJ. Stereoselective Primary and Secondary Nucleation Events in Multicomponent Seeded Supramolecular Polymerization. J Am Chem Soc 2021; 143:11777-11787. [PMID: 34308651 DOI: 10.1021/jacs.1c05642] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bioinspired, kinetically controlled seeded growth has been recently shown to provide length, dispersity, and sequence control on the primary structure of dynamic supramolecular polymers. However, command over the molecular organization at all hierarchical levels for the modulation of higher order structures of supramolecular polymers remains a formidable task. In this context, a surface-catalyzed secondary nucleation process, which plays an important role in the autocatalytic generation of amyloid fibrils and also during the chiral crystallization of small monomers, offers exciting possibilities for topology control in synthetic macromolecular systems by introducing secondary growth pathways compared to the usual primary nucleation-elongation process. However, mechanistic insights into the molecular determinants and driving forces for the secondary nucleation event in synthetic systems are not yet realized. Herein, we attempt to fill this dearth by showing an unprecedented molecular chirality control on the primary and secondary nucleation events in seed-induced supramolecular polymerization. Comprehensive kinetic experiments using in situ spectroscopic probing of the temporal changes of the monomer organization during the growth process provide a unique study to characterize the primary and secondary nucleation events in a supramolecular polymerization process. Kinetic analyses along with various microscopic studies further reveal the remarkable effect of stereoselective nucleation and seeding events on the (micro)structural aspects of the resulting multicomponent supramolecular polymers.
Collapse
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Aritra Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Arka Som
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sarit S Agasti
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
25
|
Ayzac V, Dirany M, Raynal M, Isare B, Bouteiller L. Energetics of Competing Chiral Supramolecular Polymers. Chemistry 2021; 27:9627-9633. [PMID: 33871118 DOI: 10.1002/chem.202100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 11/06/2022]
Abstract
Chirality can have unexpected consequences including on properties other than spectroscopic. We show herein that a racemic mixture of bis-urea stereoisomers forms thermodynamically stable supramolecular polymers that result in a more viscous solution than for the pure stereoisomer. The origin of this macroscopic property was probed by characterizing the structure and stability of the assemblies. Both racemic and non-racemic bis-urea stereoisomers form two competing helical supramolecular polymers in solution: a double and a single helical structure at low and high temperature, respectively. The transition temperature between these assemblies, as probed by spectroscopic and calorimetric analyses, is strongly influenced by the composition (by up to 70 °C). A simple model that accounts for the thermodynamics of this system, indicates that the stereochemical defects (chiral mismatches and helix reversals) affect much more the stability of single helices. Therefore, the heterochiral double helical structure predominates over the single helical structure (whilst the opposite holds for the homochiral structures), which explains the aforementioned higher viscosity of the racemic bis-urea solution. This rationale constitutes a new basis to tune the macroscopic properties of the increasing number of supramolecular polymers reported to exhibit competing chiral nanostructures.
Collapse
Affiliation(s)
- Virgile Ayzac
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, Sorbonne Université, 75005, Paris, France
| | - Mohammed Dirany
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, Sorbonne Université, 75005, Paris, France
| | - Matthieu Raynal
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, Sorbonne Université, 75005, Paris, France
| | - Benjamin Isare
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, Sorbonne Université, 75005, Paris, France
| | - Laurent Bouteiller
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Equipe Chimie des Polymères, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
26
|
Matern J, Bäumer N, Fernández G. Unraveling Halogen Effects in Supramolecular Polymerization. J Am Chem Soc 2021; 143:7164-7175. [PMID: 33913728 DOI: 10.1021/jacs.1c02384] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Halogens play a crucial role in numerous natural processes and synthetic materials due to their unique physicochemical properties and the diverse interactions they can engage in. In the field of supramolecular polymerization, however, halogen effects remain poorly understood, and investigations have been restricted to halogen bonding or the inclusion of polyfluorinated side groups. Recent contributions from our group have revealed that chlorine ligands greatly influence molecular packing and pathway complexity phenomena of various metal complexes. These results prompted us to explore the role of the halogen nature on supramolecular polymerization, a phenomenon that has remained unexplored to date. To address this issue, we have designed a series of archetypal bispyridyldihalogen PtII complexes bearing chlorine (1), bromine (2), or iodine (3) and systematically compared their supramolecular polymerization in nonpolar media using various experimental methods and theory. Our studies reveal a remarkably different supramolecular polymerization for the three compounds, which can undergo two competing pathways with either slipped (kinetic) or parallel (thermodynamic) molecular packing. The halogen exerts an inverse effect on the energetic levels of the two self-assembled states, resulting in a single thermodynamic pathway for 3, a transient kinetic species for 2, and a hidden thermodynamic state for 1. This seesaw-like bias of the energy landscape can be traced back to the involvement of the halogens in weak N-H···X hydrogen-bonding interactions in the kinetic pathway, whereas in the thermodynamic pathway the halogens are not engaged in the stabilizing interaction motif but rather amplify solvophobic effects.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Nils Bäumer
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
27
|
Ueda M, Aoki T, Akiyama T, Nakamuro T, Yamashita K, Yanagisawa H, Nureki O, Kikkawa M, Nakamura E, Aida T, Itoh Y. Alternating Heterochiral Supramolecular Copolymerization. J Am Chem Soc 2021; 143:5121-5126. [DOI: 10.1021/jacs.1c00823] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michihisa Ueda
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsubasa Aoki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takayoshi Akiyama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | | | | | | | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshimitsu Itoh
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|