1
|
Nie Q, Luo X, Wang K, Ding Y, Jia S, Zhao Q, Li M, Zhang J, Zhuo Y, Lin J, Guo C, Zhang Z, Liu H, Zeng G, You J, Sun L, Lu H, Ma M, Jia Y, Zheng MH, Pang Y, Qiao J, Jiang C. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. Cell 2024; 187:2717-2734.e33. [PMID: 38653239 DOI: 10.1016/j.cell.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as β-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.
Collapse
Affiliation(s)
- Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; State Key Laboratory of Food Science and Resources, Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Kai Wang
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Shumi Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Meng Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jinxin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yingying Zhuo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Chenghao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Zhiwei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Guangyi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Jie You
- Department of Thyroid Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lulu Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, Beijing 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences and Chemical Biology Center, Peking University, Beijing 100191, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China; Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| | - Yanli Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Jie Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China; Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China; Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Liu L, Wang W, Chen M, Zhang Y, Mao H, Wang D, Chen Y, Li P. Characterization of three succinyl-CoA acyltransferases involved in polyketide chain assembly. Appl Microbiol Biotechnol 2023; 107:2403-2412. [PMID: 36929192 DOI: 10.1007/s00253-023-12481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Polyketides are a class of natural products with astonishing structural diversities, fascinating biological activities, and a versatile of applications. In polyketides biosynthesis, acyltransferases (ATs) are the 'gatekeeping' enzymes selecting the specific CoA-activated acyl groups as building blocks and transferring them onto the phosphopantetheine arm of acyl carrier proteins (ACPs) to enable the following condensation reactions to assemble the polyketide chain. Herein, the Art2 protein from aurantinins, a group of the antibacterial polyketides, is characterized in vitro as an AT that can load a CoA-activated succinyl unit onto the first ACP domain of Art17 (ACPArt17-1). In addition, another two proteins, GbnB and EtnB, involved in the biosynthesis of gladiolin and etnangien respectively, were traced by literature mining, homologous searching, and product structure analysis and then identified as functional succinyl-CoA ATs by the ACPArt17-1 assays. Taken together, by the assay method employing ACPArt17-1 as an acyl acceptor, we identified three ATs that can introduce a succinyl unit into the polyketide assembly line, which enriches the toolbox of polyketide biosynthetic enzymes and sets a stage for incorporating a succinyl unit into polyketide backbones in synthetic biological manners. KEY POINTS: • Three acyltransferases that are able to load ACP with a succinyl unit were characterized in vitro. • ACPArt17-1 can be used as an acceptor to assay succinyl-CoA AT from different polyketides. • The succinyl unit can be incorporated into polyketides assembly process.
Collapse
Affiliation(s)
- Lilu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzhao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuwei Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huijin Mao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dacheng Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Okoth DA, Hug JJ, Garcia R, Müller R. Discovery, Biosynthesis and Biological Activity of a Succinylated Myxochelin from the Myxobacterial Strain MSr12020. Microorganisms 2022; 10:microorganisms10101959. [PMID: 36296235 PMCID: PMC9611931 DOI: 10.3390/microorganisms10101959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Myxobacteria feature unique biological characteristics, including their capability to glide on the surface, undergo different multicellular developmental stages and produce structurally unique natural products such as the catecholate-type siderophores myxochelins A and B. Herein, we report the isolation, structure elucidation and a proposed biosynthesis of the new congener myxochelin B-succinate from the terrestrial myxobacterial strain MSr12020, featuring a succinyl decoration at its primary amine group. Myxochelin-B-succinate exhibited antibacterial growth inhibition and moderate cytotoxic activity against selected human cancer cell lines. This unique chemical modification of myxochelin B might provide interesting insights for future microbiological studies to understand the biological function and biosynthesis of secondary metabolite succinylation.
Collapse
Affiliation(s)
- Dorothy A. Okoth
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Chemistry, School of Physical and Biological Sciences, Main campus, Maseno University, Maseno P.O. Box 333-40105, Kenya
| | - Joachim J. Hug
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz International Labs, Department of Microbial Natural Products, Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Correspondence:
| |
Collapse
|
6
|
Zhang Y, Bai J, Zhang L, Zhang C, Liu B, Hu Y. Self-Resistance in the Biosynthesis of Fungal Macrolides Involving Cycles of Extracellular Oxidative Activation and Intracellular Reductive Inactivation. Angew Chem Int Ed Engl 2021; 60:6639-6645. [PMID: 33314510 DOI: 10.1002/anie.202015442] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 11/11/2022]
Abstract
Self-resistance genes are employed by many microbial producers of bioactive natural products to avoid self-harm. Herein, we describe a unique strategy for self-resistance toward a macrolide antibiotic, A26771B (1), identified by elucidating its biosynthetic pathway in the fungus Penicillium egyptiacum. A highly reducing polyketide synthase and a trans-acting thioesterase generate the macrolide backbone, and a cytochrome P450 and an acyltransferase, respectively catalyze hydroxylation and succinylation to form the prodrug berkeleylactone E (2). Then, extracellular oxidative activation by a secreted flavin-dependent oxidase forms 1, while intracellular reductive inactivation by a short-chain reductase reforms 2, forming a redox cycle. Our work illustrates a unique redox-mediated resistance mechanism for fungal antibiotics and contributes to the understanding of antibiotic biosynthesis and resistance.
Collapse
Affiliation(s)
- Yalong Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Le Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Chen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Catalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|