1
|
Pessemesse Q, Mendoza SD, Peltier JL, Gojiashvili E, Ravn AK, Lorkowski J, Gembicky M, Bera SS, Payard PA, Engle KM, Jazzar R. Harnessing Multi-Center-2-Electron Bonds for Carbene Metal-Hydride Nanocluster Catalysis. Angew Chem Int Ed Engl 2025; 64:e202419537. [PMID: 39821435 DOI: 10.1002/anie.202419537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/14/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025]
Abstract
N-Heterocyclic carbene (NHC) ligands possess the ability to stabilize metal-based nanomaterials for a broad range of applications. With respect to metal-hydride nanomaterials, however, carbenes are rare, which is surprising if one considers the importance of metal-hydride bonds across the chemical sciences. In this study, we introduce a bottom-up approach that leverages preexisting metal-metal m-center-n-electron (mc-ne) bonds to access a highly stable cyclic(alkyl)amino carbene (CAAC) copper-hydride nanocluster, [(CAAC)6Cu14H12][OTf]2 with superior stability compared to Stryker's reagent, a popular commercial phosphine-based copper hydride catalyst. Density functional theory (DFT) calculations reveal that the enhanced stability stems from hydride-to-ligand backbonding with the π-accepting carbene. This new cluster emerges as an efficient and selective copper-hydride pre-catalyst, thereby providing a bench-stable alternative for catalytic applications.
Collapse
Affiliation(s)
- Quentin Pessemesse
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS., 1 rue Victor Grignard, Villeurbanne Cedex, France
| | - Skyler D Mendoza
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jesse L Peltier
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
- Departments of Chemistry & Chemical Biology, and Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States
| | - Elguja Gojiashvili
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States
| | - Anne K Ravn
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Jan Lorkowski
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| | - Milan Gembicky
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| | - Sourav S Bera
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Pierre-Adrien Payard
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS., 1 rue Victor Grignard, Villeurbanne Cedex, France
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, United States
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, United States
| |
Collapse
|
2
|
Wu Q, Zhong Y, Zhou L, Zhu M, Liu S, Qin R, Zheng N. Oxygen Vacancy-Enriched Alumina Stabilized Pd Nanocatalysts for Selective Hydrogenation of Phenols. J Am Chem Soc 2024; 146:32263-32268. [PMID: 39531254 DOI: 10.1021/jacs.4c11726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The prevalence of electronic defects has not been successfully demonstrated in nonreducible oxides. This work presents a straightforward approach to the preparation of a yellow alumina rich in F-centers (oxygen vacancies containing free electrons), which is well characterized by systematic spectral methods. The surface electron density of the as-prepared F-center enriched alumina sample was estimated to be approximately 0.35 mmol·g-1. Free electrons on the surface can reduce palladium precursors in situ, leading to the deposition of fine Pd nanoparticles on alumina. The produced Pd nanocatalysts are highly effective in the selective hydrogenation of phenol to cyclohexanone, achieving a high catalytic performance under mild conditions (30 °C and 0.1 MPa of H2). Systematic mechanism investigations reveal that hydroxyl radicals generated at the catalyst interfaces facilitate the activation of phenol. The activated phenol is then sequentially hydrogenated to give the intermediate 2-cyclohexenone and then the desired cyclohexanone. The catalyst system demonstrates efficacy in selectively hydrogenating substituted phenols into a wide array of functional ketones.
Collapse
Affiliation(s)
- Qingyuan Wu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361002, China
| | - Yuanyuan Zhong
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lu Zhou
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mengsi Zhu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361002, China
| | - Shengjie Liu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361002, China
| | - Ruixuan Qin
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361002, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361002, China
| |
Collapse
|
3
|
Li S, Wu Q, You X, Ren X, Du P, Li F, Zheng N, Shen H. Anchoring Frustrated Lewis Pair Active Sites on Copper Nanoclusters for Regioselective Hydrogenation. J Am Chem Soc 2024; 146:27852-27860. [PMID: 39352212 DOI: 10.1021/jacs.4c10251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In recent years, the concept of Frustrated Lewis Pairs (FLPs), which consist of a combination of Lewis acid (LA) and Lewis base (LB) active sites arranged in a suitable geometric configuration, has been widely utilized in homogeneous catalytic reactions. This concept has also been extended to solid supports such as zeolites, metal oxide surfaces, and metal/covalent organic frameworks, resulting in a diverse range of heterogeneous FLP catalysts that have demonstrated notable efficiency and recyclability in activating small molecules. This study presents the successful immobilization of FLP active sites onto the surface of ligand-stabilized copper nanoclusters with atomic precision, leading to the development of copper nanocluster FLP catalysts characterized by high reactivity, stability, and selectivity. Specifically, thiol ligands containing 2-methoxyl groups were strategically designed to stabilize the surface of [Cu34S7(RS)18(PPh3)4]2+ (where RSH = 2-methoxybenzenethiol), facilitating the formation of FLPs between the surface copper atoms (LA) and ligand oxygen atoms (LB). Experimental and theoretical investigations have demonstrated that these FLPs on the cluster surface can efficiently activate H2 through a heterolytic pathway, resulting in superior catalytic performance in the hydrogenation of alkenes under mild conditions. Notably, the intricate yet precise surface coordination structures of the cluster, reminiscent of enzyme catalysts, enable the hydrogenation process to proceed with nearly 100% selectivity. This research offers valuable insights into the design of FLP catalysts with enhanced activity and selectivity by leveraging surface/interface coordination chemistry of ligand-stabilized atomically precise metal nanoclusters.
Collapse
Affiliation(s)
- Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Qingyuan Wu
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Xuexin You
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Xiaofei Ren
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Peilin Du
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Fengyu Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
| | - Nanfeng Zheng
- New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
4
|
Alayoglu P, Rathnayaka SC, Chang T, Wang SG, Chen YS, Mankad NP. Cu site differentiation in tetracopper(i) sulfide clusters enables biomimetic N 2O reduction. Chem Sci 2024:d4sc00701h. [PMID: 39129770 PMCID: PMC11306996 DOI: 10.1039/d4sc00701h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Copper clusters feature prominently in both metalloenzymes and synthetic nanoclusters that mediate catalytic redox transformations of gaseous small molecules. Such reactions are critical to biological energy conversion and are expected to be crucial parts of renewable energy economies. However, the precise roles of individual metal atoms within clusters are difficult to elucidate, particularly for cluster systems that are dynamic under operating conditions. Here, we present a metal site-specific analysis of synthetic Cu4(μ4-S) clusters that mimic the Cu Z active site of the nitrous oxide reductase enzyme. Leveraging the ability to obtain structural snapshots of both inactive and active forms of the synthetic model system, we analyzed both states using resonant X-ray diffraction anomalous fine structure (DAFS), a technique that enables X-ray absorption profiles of individual metal sites within a cluster to be extracted independently. Using DAFS, we found that a change in cluster geometry between the inactive and active states is correlated to Cu site differentiation that is presumably required for efficient activation of N2O gas. More precisely, we hypothesize that the Cu δ+⋯Cu δ- pairs produced upon site differentiation are poised for N2O activation, as supported by computational modeling. These results provide an unprecedented level of detail on the roles of individual metal sites within the synthetic cluster system and how those roles interplay with cluster geometry to impact the reactivity function. We expect this fundamental knowledge to inform understanding of metal clusters in settings ranging from (bio)molecular to nanocluster to extended solid systems involved in energy conversion.
Collapse
Affiliation(s)
- Pinar Alayoglu
- Department of Chemistry, University of Illinois at Chicago Chicago IL 60607 USA
| | - Suresh C Rathnayaka
- Department of Chemistry, University of Illinois at Chicago Chicago IL 60607 USA
| | - Tieyan Chang
- ChemMatCARS, The University of Chicago Argonne IL 60439 USA
| | | | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago Argonne IL 60439 USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago Chicago IL 60607 USA
| |
Collapse
|
5
|
Maiola ML, Buss JA. Accessing Ta/Cu Architectures via Metal-Metal Salt Metatheses: Heterobimetallic C-H Bond Activation Affords μ-Hydrides. Angew Chem Int Ed Engl 2023; 62:e202311721. [PMID: 37831544 DOI: 10.1002/anie.202311721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
We employ a metal-metal salt metathesis strategy to access low-valent tantalum-copper heterometallic architectures (Ta-μ2 -H2 -Cu and Ta-μ3 -H2 -Cu3 ) that emulate structural elements proposed for surface alloyed nanomaterials. Whereas cluster assembly with carbonylmetalates is well precedented, the use of the corresponding polyarene transition metal anions is underexplored, despite recognition of these highly reactive fragments as storable sources of atomic Mn- . Our application of this strategy provides structurally unique early-late bimetallic species. These complexes incorporate bridging hydride ligands during their syntheses, the origin of which is elucidated via detailed isotopic labelling studies. Modification of ancillary ligand sterics and electronics alters the mechanism of bimetallic assembly; a trinuclear complex resulting from dinuclear C-H activation is demonstrated as an intermediate en route to formation of the bimetallic. Further validating the promise of this rational, bottom-up approach, a unique tetranuclear species was synthesized, featuring a Ta centre bearing three Ta-Cu interactions.
Collapse
Affiliation(s)
- Michela L Maiola
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Joshua A Buss
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Hippolyte L, Sadek O, Ba Sowid S, Porcheron A, Bridonneau N, Blanchard S, Desage-El Murr M, Gatineau D, Gimbert Y, Mercier D, Marcus P, Chauvier C, Chanéac C, Ribot F, Fensterbank L. N-Heterocyclic Carbene Boranes: Dual Reagents for the Synthesis of Gold Nanoparticles. Chemistry 2023; 29:e202301610. [PMID: 37265455 DOI: 10.1002/chem.202301610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/03/2023]
Abstract
N-Heterocyclic carbenes (NHCs) have drawn considerable interest in the field of nanomaterials chemistry as highly stabilizing ligands enabling the formation of strong and covalent carbon-metal bonds. Applied to gold nanoparticles synthesis, the most common strategy consists of the reduction of a preformed NHC-AuI complex with a large excess of a reducing agent that makes the particle size difficult to control. In this paper, we report the straightforward synthesis of NHC-coated gold nanoparticles (NHC-AuNPs) by treating a commercially available gold(I) precursor with an easy-to-synthesize NHC-BH3 reagent. The latter acts as both the reducing agent and the source of surface ligands operating under mild conditions. Mechanistic studies including NMR spectroscopy and mass spectrometry demonstrate that the reduction of gold(I) generates NHC-BH2 Cl as a by-product. This strategy gives efficient control over the nucleation and growth of gold particles by varying the NHC-borane/gold(I) ratio, allowing unparalleled particle size variation over the range of 4.9±0.9 to 10.0±2.7 nm. Our strategy also allows an unprecedented precise and controlled seeded growth of gold nanoparticles. In addition, the as-prepared NHC-AuNPs exhibit narrow size distributions without the need for extensive purification or size-selectivity techniques, and are stable over months.
Collapse
Affiliation(s)
- Laura Hippolyte
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Omar Sadek
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Salem Ba Sowid
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Alexandre Porcheron
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Nathalie Bridonneau
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), 91400, Orsay Cedex, France
| | - Sébastien Blanchard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Marine Desage-El Murr
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - David Gatineau
- Département de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, 38050, Grenoble, France
| | - Yves Gimbert
- Département de Chimie Moléculaire (UMR CNRS 5250), Université Grenoble Alpes, 38050, Grenoble, France
| | - Dimitri Mercier
- PSL Research University, CNRS - Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), Physical Chemistry of Surfaces Research Group, 75005, Paris, France
| | - Philippe Marcus
- PSL Research University, CNRS - Chimie ParisTech, Institut de Recherche de Chimie Paris (IRCP), Physical Chemistry of Surfaces Research Group, 75005, Paris, France
| | - Clément Chauvier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| | - Corinne Chanéac
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
| | - François Ribot
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 75252, Paris Cedex 05, France
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 75252, Paris Cedex 05, France
| |
Collapse
|
7
|
Wang M, Li S, Chen H, Sun X, Sun J, Jia Y, Guo S, Sun C, Shen H. DppfCuBH 4: new reducing agents for the synthesis of ferrocene-functionalized metal nanoclusters. Dalton Trans 2023. [PMID: 37449919 DOI: 10.1039/d3dt01461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A facile synthesis of atomically precise metal nanoclusters, especially those decorated with functional groups, is the prerequisite for finding applications in special fields and studying structure-and-property relationships. The exploration of simple and efficient synthetic prototypes for introducing functional ligands (such as ferrocene) into cluster moieties is thus of high interest. In this work, a type of reducing agent of dppfCuBH4 (dppf is 1,1'-bis(diphenyphosphino)ferrocene) is introduced for the first time to prepare ferrocene-functionalized metal nanoclusters. Two new clusters of [Ag25Cu4(dppf)6(3-F-PhCC)12Cl6]3+ (1) and [Ag4(dppf)5Cl2]2+ (2) have been obtained from the simple synthetic method. The two compounds have been fully characterized by advanced techniques of electrospray ionization mass spectroscopy (ESI-MS), nuclear magnetic resonance (NMR), and ultraviolet-visible spectroscopy (UV-Vis). The total structure of the clusters, as determined by X-ray single-crystal diffraction, describes the Ag13@Ag12Cu4(dppf)6(3-F-PhCC)12Cl6 core-shell structure of 1 and [Ag2Cl(dppf)2]+-dppf-[Ag2Cl(dppf)2]+ polymeric structure of 2. This work opens the door to employing dppfCuBH4 as a functional reducing agent to discover many underlying metal nanoclusters and even other nanomaterials which feature ferrocene-groups.
Collapse
Affiliation(s)
- Meng Wang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Simin Li
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Huijun Chen
- College of Food Science and Pharmaceutical Engineering, Wuzhou University, Guangxi, 543000, China
| | - Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Jing Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yanyuan Jia
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Cunfa Sun
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
8
|
Lei Z, Zhao P, Pei XL, Ube H, Ehara M, Shionoya M. Photoluminescence control by atomically precise surface metallization of C-centered hexagold(i) clusters using N-heterocyclic carbenes. Chem Sci 2023; 14:6207-6215. [PMID: 37325149 PMCID: PMC10266449 DOI: 10.1039/d3sc01976d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
The properties of metal clusters are highly dependent on their molecular surface structure. The aim of this study is to precisely metallize and rationally control the photoluminescence properties of a carbon(C)-centered hexagold(i) cluster (CAuI6) using N-heterocyclic carbene (NHC) ligands with one pyridyl, or one or two picolyl pendants and a specific number of silver(i) ions at the cluster surface. The results suggest that the photoluminescence of the clusters depends highly on both the rigidity and coverage of the surface structure. In other words, the loss of structural rigidity significantly reduces the quantum yield (QY). The QY in CH2Cl2 is 0.04 for [(C)(AuI-BIPc)6AgI3(CH3CN)3](BF4)5 (BIPc = N-isopropyl-N'-2-picolylbenzimidazolylidene), a significant decrease from 0.86 for [(C)(AuI-BIPy)6AgI2](BF4)4 (BIPy = N-isopropyl-N'-2-pyridylbenzimidazolylidene). This is due to the lower structural rigidity of the ligand BIPc because it contains a methylene linker. Increasing the number of capping AgI ions, i.e., the coverage of the surface structure, increases the phosphorescence efficiency. The QY for [(C)(AuI-BIPc2)6AgI4(CH3CN)2](BF4)6 (BIPc2 = N,N'-di(2-pyridyl)benzimidazolylidene) recovers to 0.40, 10-times that of the cluster with BIPc. Further theoretical calculations confirm the roles of AgI and NHC in the electronic structures. This study reveals the atomic-level surface structure-property relationships of heterometallic clusters.
Collapse
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
9
|
Beamer AW, Buss JA. Synthesis, Structural Characterization, and CO 2 Reactivity of a Constitutionally Analogous Series of Tricopper Mono-, Di-, and Trihydrides. J Am Chem Soc 2023. [PMID: 37276588 DOI: 10.1021/jacs.3c04170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The formation of hydrides at heterogeneous copper surfaces results in dramatic structural and reactivity changes, yet the morphologies of these materials and their respective roles in catalysis are not well understood. Of particular interest is the reactivity of heterogeneous copper hydrides with carbon dioxide (CO2), an early mechanistic branching point in the CO2 reduction reaction. Herein, we report the synthesis, characterization, and reactivity of tricopper compounds supported by a facially biased, chelating tris(carbene) ligand scaffold. This sterically bulky environment affords access to an isolable series of tricopper hydrides: [LCu3H]2+ (4), [LCu3H2]+ (3), and LCu3H3 (6). Single-crystal X-ray diffraction and solution NMR spectroscopy studies reveal both geometric flexibility within the Cu3 core and fluxionality of hydride ligands across the Cu3 cluster, providing both atomically precise experimental analogues of static surface species and emulating dynamic ligand behavior proposed for surfaces. Electronic structure calculations serve as a predictor of hydricity, which was likewise benchmarked experimentally via both protonolysis and hydride abstraction reactions. Increased hydride number (and commensurately lower cluster charge) results in more hydridic complexes, with a thermodynamic hydricity range spanning >30 kcal/mol. These thermochemical studies serve as an accurate predictor of CO2 reactivity. Together, this Cu3Hx series exhibits the structure/reactivity relationships proposed for catalytically active copper surfaces, validating the application of carefully designed molecular clusters toward elucidating mechanisms in surface science.
Collapse
Affiliation(s)
- Andrew W Beamer
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Joshua A Buss
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Sun X, Tang X, Gao YL, Zhao Y, Wu Q, Cao D, Shen H. An atomically precise Ag 18Cu 8 nanocluster with rich alkynyl-metal coordination structures and unique SbF 6- assembling modes. NANOSCALE 2023; 15:2316-2322. [PMID: 36636988 DOI: 10.1039/d2nr05814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Elucidating the coordination structures and assembling modes of atomically precise metal nanoclusters (NCs) remains a hot topic as it gives answers to the underlying mechanism of nanomaterials and bulk materials in terms of structure-property relationships. Here we report a novel silver-copper alloy NC featuring rich alkynyl-metal coordination modes and unique SbF6- assembling structures. The NC, with the composition of [Ag18Cu8(dppp)4(tBu-C6H4CC)22](SbF6)4 (dppp = 1,3-bis(diphenylphosphino)-propane), was prepared by a stepwise synthetic approach. Single-crystal X-ray diffraction analysis revealed that such a NC featured a staircase-like Ag18Cu8 kernel, which was protected by hybrid alkynyl and dppp ligands in diverse coordination structures and multiple environments. The structural analysis also revealed the unique function of SbF6- in inducing the assembly of cluster moieties, highlighting the importance of counterions in assembling nanomolecules. The diverse coordination structures of the protective ligands with metal ions and the indispensable roles of counterions in assembling the cluster moieties have also been supported by nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS) studies, making it a model system to showcase the uniqueness of atomically precise metal NCs in illustrating the coordination chemistry of nanomaterials and bulk materials at the molecular level.
Collapse
Affiliation(s)
- Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiongkai Tang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan-Li Gao
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Yujuan Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Qingyuan Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxu Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
11
|
Vargas EL, Franco M, Alonso I, Tortosa M, Belén Cid M. Diboron reagents in the deoxygenation of nitrones. Org Biomol Chem 2023; 21:807-816. [PMID: 36599009 DOI: 10.1039/d2ob01880b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
B2nep2 efficiently promotes the N-O cleavage of nitrones to form imines in very high yields via a simple, efficient, sustainable, functional group tolerant and scalable protocol. The reaction occurs in the absence of additives through a concerted mechanism. We demonstrated that DMPO and TEMPO, typically used as radical traps, are also deoxygenated by diboron reagents, which demonstrates their limitation as mechanistic probes.
Collapse
Affiliation(s)
- Emily L Vargas
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Mario Franco
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Inés Alonso
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mariola Tortosa
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M Belén Cid
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
12
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
13
|
Shen H, Tang X, Wu Q, Zhang Y, Ma C, Xu Z, Teo BK, Zheng N. Guiding the High-Yield Synthesis of NHC-Ligated Gold Nanoclusters by 19F NMR Spectroscopy. ACS NANOSCIENCE AU 2022; 2:520-526. [PMID: 37101850 PMCID: PMC10125265 DOI: 10.1021/acsnanoscienceau.2c00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 04/28/2023]
Abstract
Optimizing the synthesis of atomically precise metal nanoclusters by virtue of molecular tools is highly desirable but quite challenging. Herein we report how 19F NMR spectroscopy can be used to guide the high-yield synthesis of N-heterocyclic carbene (NHC)-stabilized gold nanoclusters. In spite of little difference, 19F NMR signals of fluoro-incorporated NHCs (FNHC) are highly sensitive to the tiny change in their surrounding chemical environments with different N-substituents, metals, or anions, thus providing a convenient strategy to discriminate species in reaction mixtures. By using 19F NMR, we first disclosed that the one-pot reduction of FNHC-Au-X (X is halide) yields multiple compounds, including cluster compounds and also a large amount of highly stable [Au(FNHC)2]+ byproduct. The detailed quantitative 19F NMR analyses over the reductive synthesis of NHC-stabilized Au nanoclusters reveal that the formation of the di-NHC complex is deleterious to the high-yield synthesis of NHC-stabilized Au nanoclusters. With the understanding, the reaction kinetic was then slowed by controlling the reduction rate to achieve the high yield of a [Au24(FNHC)14X2H3]3+ nanocluster with a unique structure. The strategy demonstrated in this work is expected to provide an effective tool to guide the high-yield synthesis of organic ligand-stabilized metal nanoclusters.
Collapse
Affiliation(s)
- Hui Shen
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
& Local Joint Engineering Research Center for Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiongkai Tang
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
& Local Joint Engineering Research Center for Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
& Local Joint Engineering Research Center for Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuhao Zhang
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
& Local Joint Engineering Research Center for Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chuxin Ma
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
& Local Joint Engineering Research Center for Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Xu
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
& Local Joint Engineering Research Center for Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Boon K. Teo
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
& Local Joint Engineering Research Center for Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
& Local Joint Engineering Research Center for Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
14
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022; 61:e202206390. [PMID: 35796423 PMCID: PMC9545232 DOI: 10.1002/anie.202206390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/29/2022]
Abstract
Carbenes, including N-heterocyclic carbene (NHC) ligands, are used extensively to stabilize open-shell transition metal complexes and organic radicals. Yet, it remains unknown, which carbene stabilizes a radical well and, thus, how to design radical-stabilizing C-donor ligands. With the large variety of C-donor ligands experimentally investigated and their electronic properties established, we report herein their radical-stabilizing effect. We show that radical stabilization can be understood by a captodative frontier orbital description involving π-donation to- and π-donation from the carbenes. This picture sheds a new perspective on NHC chemistry, where π-donor effects usually are assumed to be negligible. Further, it allows for the intuitive prediction of the thermodynamic stability of covalent radicals of main group- and transition metal carbene complexes, and the quantification of redox non-innocence.
Collapse
Affiliation(s)
- Kevin Breitwieser
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Hilke Bahmann
- Physical and Theoretical ChemistrySaarland UniversityCampus B2.266123SaarbrückenGermany
| | - Robert Weiss
- Organische ChemieFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergHenkestr. 4291054ErlangenGermany
| | - Dominik Munz
- Coordination ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
- Inorganic and General ChemistryFriedrich-Alexander-Universität (FAU) Erlangen-NürnbergEgerlandstr. 191058ErlangenGermany
| |
Collapse
|
15
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing 1,1-Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin-2-ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022; 61:e202202637. [PMID: 35362643 PMCID: PMC9400972 DOI: 10.1002/anie.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Herein we report secondary pyrrolidin-2-ols as a source of cyclic (alkyl)(amino)carbenes (CAAC) for the synthesis of CAAC-CuI -complexes and cyclic thiones when reacted with CuI -salts and elemental sulfur, respectively, under reductive elimination of water from the carbon(IV)-center. This result demonstrates a convenient and facile access to CAAC-based CuI -salts, which are well known catalysts for different organic transformations. It further establishes secondary alcohols to be a viable source of carbenes-realizing after 185 years Dumas' dream who tried to prepare the parent carbene (CH2 ) by 1,1-dehydration of methanol. Addressed is also the reactivity of water towards CAACs, which proceeds through an oxidative addition of the O-H bond to the carbon(II)-center. This emphasizes the ability of carbon-compounds to mimic the reactivity of transition-metal complexes: reversible oxidative addition and reductive elimination of the O-H bond to/from the C(II)/C(IV)-centre.
Collapse
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | | | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| |
Collapse
|
16
|
Breitwieser K, Bahmann H, Weiss R, Munz D. Gauging Radical Stabilization with Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kevin Breitwieser
- Saarland University: Universitat des Saarlandes Coordination Chemistry GERMANY
| | - Hilke Bahmann
- Saarland University: Universitat des Saarlandes Theoretical Chemistry GERMANY
| | - Robert Weiss
- FAU Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Organic Chemistry GERMANY
| | - Dominik Munz
- Universitat des Saarlandes Inorganic Chemistry: Coordination Chemistry Campus C 4.1 66123 Saarbrücken GERMANY
| |
Collapse
|
17
|
Shen H, Wu Q, Malola S, Han YZ, Xu Z, Qin R, Tang X, Chen YB, Teo BK, Häkkinen H, Zheng N. N-Heterocyclic Carbene-Stabilized Gold Nanoclusters with Organometallic Motifs for Promoting Catalysis. J Am Chem Soc 2022; 144:10844-10853. [PMID: 35671335 DOI: 10.1021/jacs.2c02669] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complexity of heterogeneous metal catalysts makes it challenging to gain insights into their catalytic mechanisms. Thus, there exists a huge gap between heterogeneous catalysis and organometallic catalysis. With the success in the preparation of highly robust atomically precise metal nanocluster catalysts (i.e., [Au16(NHC-1)5(PA)3Br2]3+ and [Au17(NHC-1)4(PA)4Br4]+, where NHC-1 is a bidentate NHC ligand, and PA is phenylacetylide) with surface organometallic motifs anchored on the metallic core, we demonstrate in this work how the metallic core works synergistically with the surface organometallic motifs to enhance the catalysis. More importantly, the discovery allows the development of highly stable and recyclable heterogeneous metal catalysts to achieve efficient hydroamination of alkynes with an extremely low catalyst dosage (0.002 mol %), helping bridge the gap between heterogeneous and homogeneous metal catalysis. The surface modification of metal nanocatalysts with organometallic motifs provides a new design principle of metal catalysts with enhanced catalysis.
Collapse
Affiliation(s)
- Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Ying-Zi Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiongkai Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang-Bo Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Boon K Teo
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
18
|
|
19
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing the 1,1‐Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin‐2‐ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | | | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | - Cem B. Yildiz
- Aksaray Universitesi Aromatic and Medicinal Plants TURKEY
| | - Anukul Jana
- TIFR Centre for Interdisciplinary Sciences Chemical Science 21, Brundavan Colony, Narsingi 500075 Hyderabad INDIA
| |
Collapse
|
20
|
Cyclic (alkyl)(amino)carbene (CAAC) ligands: Electronic structure and application as chemically- and redox-non-innocent ligands and chromophores. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2022. [DOI: 10.1016/bs.adomc.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Schütz M, Gemel C, Klein W, Fischer RA, Fässler TF. Intermetallic phases meet intermetalloid clusters. Chem Soc Rev 2021; 50:8496-8510. [PMID: 34114586 DOI: 10.1039/d1cs00286d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this article intermetalloid clusters of Cu-Zn, Cu-AI, Cu-Sn, and Cu-Pb are discussed. Intermetallic compounds based on these metal combinations are of the Hume-Rothery type with well-defined structures related to the valence electron count of the involved metals. Many Zintl-type and molecular clusters with these metals are known with remarkable structural parallels to the respective solid-state phases. On several examples, this article discusses intermetalloid clusters in terms of their metal core structures and relates them to structural principles in intermetallic solid-state phases. Also the syntheses of such clusters are addressed. Zintl-type and molecular clusters are most generally accessible from organometallic precursor complexes with redox processes between the different metals as an underlying synthesis concept.
Collapse
Affiliation(s)
- Max Schütz
- Department of Chemistry, Technical University of Munich, Munich, Germany.
| | - Christian Gemel
- Department of Chemistry, Technical University of Munich, Munich, Germany.
| | - Wilhelm Klein
- Department of Chemistry, Technical University of Munich, Munich, Germany.
| | - Roland A Fischer
- Department of Chemistry, Technical University of Munich, Munich, Germany.
| | - Thomas F Fässler
- Department of Chemistry, Technical University of Munich, Munich, Germany.
| |
Collapse
|
22
|
Lei Z, Pei XL, Ube H, Shionoya M. Reconstituting C-Centered Hexagold(I) Clusters with N-Heterocyclic Carbene Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|