1
|
Peng X, Zhang Y, Liu X, Qian Y, Ouyang Z, Kong H. From Short- to Long-Range Chiral Recognition on Surfaces: Chiral Assembly and Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307171. [PMID: 38054810 DOI: 10.1002/smll.202307171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Research on chiral behaviors of small organic molecules at solid surfaces, including chiral assembly and synthesis, can not only help unravel the origin of the chiral phenomenon in biological/chemical systems but also provide promising strategies to build up unprecedented chiral surfaces or nanoarchitectures with advanced applications in novel nanomaterials/nanodevices. Understanding how molecular chirality is recognized is considered to be a mandatory basis for such studies. In this review, a series of recent studies in chiral assembly and synthesis at well-defined metal surfaces under ultra-high vacuum conditions are outlined. More importantly, the intrinsic mechanisms of chiral recognition are highlighted, including short/long-range chiral recognition in chiral assembly and two main strategies to steer the reaction pathways and modulate selective synthesis of specific chiral products on surfaces.
Collapse
Affiliation(s)
- Xinchen Peng
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yinhui Zhang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xinbang Liu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yinyue Qian
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zuoling Ouyang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Huihui Kong
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
2
|
Zhao X, Miao X. Surface-supported metal-organic frameworks with geometric topological diversity via scanning tunneling microscopy. iScience 2024; 27:109392. [PMID: 38500826 PMCID: PMC10946334 DOI: 10.1016/j.isci.2024.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Surface-supported metal-organic frameworks (SMOFs) are long-range ordered periodic 2D lattice layers formed by inorganic metal nodes and organic ligands via coordination bonds on substrate surfaces. The atomic resolution STM lays a solid foundation for the conception and construction of SMOFs with large area, stable structure, and special function. In this review, the cutting-edge research of SMOFs from design strategy, preparation process, and how to accurately achieve structural and functional diversity are reviewed. Furthermore, we focus on the design and construction of novel and fascinating periodic and fractal structures, in which some typical honeycomb structures, Kagome lattice, hexagonal geometry, and Sierpiński triangles are summarized, and the related prospects for designing functional nanoscale systems and architectures are prospected. Finally, the challenges faced in the design and synthesis of SMOFs are denoted, and the application prospect and development trend of SMOFs are forecasted based on the current research status.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Xinrui Miao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
3
|
Li C, Xu Z, Zhang Y, Li J, Xue N, Li R, Zhong M, Wu T, Wang Y, Li N, Shen Z, Hou S, Berndt R, Wang Y, Gao S. Structure transformation from Sierpiński triangles to chains assisted by gas molecules. Natl Sci Rev 2023; 10:nwad088. [PMID: 37564921 PMCID: PMC10411674 DOI: 10.1093/nsr/nwad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/31/2022] [Accepted: 02/01/2023] [Indexed: 08/12/2023] Open
Abstract
Reversible transformations between fractals and periodic structures are of fundamental importance for understanding the formation mechanism of fractals. Currently, it is still a challenge to controllably achieve such a transformation. We investigate the effect of CO and CO2 molecules on Sierpiński triangles (STs) assembled from Fe atoms and 4,4″-dicyano-1,1':3',1″-terphenyl (C3PC) molecules on Au surfaces. Using scanning tunneling microscopy, we discover that the gas molecules induce a transition from STs into 1D chains. Based on density functional theory modeling, we propose that the atomistic mechanism involves the transformation of a stable 3-fold coordination Fe(C3PC)3 motif to Fe(C3PC)4 with an axially bonded CO molecule. CO2 causes the structural transformation through a molecular catassembly process.
Collapse
Affiliation(s)
- Chao Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel 24098, Germany
| | - Zhen Xu
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yajie Zhang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Jie Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Na Xue
- Central Laboratory, Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, the Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Ruoning Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Mingjun Zhong
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Tianhao Wu
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yifan Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Na Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Ziyong Shen
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Shimin Hou
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel 24098, Germany
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Song Gao
- Institute of Spin Science and Technology, South China University of Technology, Guangzhou 511442, China
| |
Collapse
|
4
|
Dai J, Zhao X, Peng Z, Li J, Lin Y, Wen X, Xing L, Zhao W, Shang J, Wang Y, Liu J, Wu K. Assembling Surface Molecular Sierpiński Triangle Fractals via K +-Invoked Electrostatic Interaction. J Am Chem Soc 2023. [PMID: 37314227 DOI: 10.1021/jacs.3c03691] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular Sierpiński triangles (STs), a family of elegant and well-known fractals, can be prepared on surfaces with atomic precision. Up to date, several kinds of intermolecular interactions such as hydrogen bond, halogen bond, coordination, and even covalent bond have been employed to construct molecular STs on metal surfaces. Herein a series of defect-free molecular STs have been fabricated via electrostatic attraction between potassium cations and electronically polarized chlorine atoms in 4,4″-dichloro-1,1':3',1″-terphenyl (DCTP) molecules on Cu(111) and Ag(111). The electrostatic interaction is confirmed both experimentally by scanning tunneling microscopy and theoretically by density functional theory calculations. These findings illustrate that electrostatic interaction can serve as an efficient driving force to construct molecular fractals, which enriches our toolbox for the bottom-up fabrication of complex functional supramolecular nanostructures.
Collapse
Affiliation(s)
- Jingxin Dai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinwei Zhao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhantao Peng
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Yuxuan Lin
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaojie Wen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lingbo Xing
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenhui Zhao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Shang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Jing Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Liu JW, Wang Y, Kang LX, Zhao Y, Xing GY, Huang ZY, Zhu YC, Li DY, Liu PN. Two-Dimensional Crystal Transition from Radialene to Cumulene on Ag(111) via Retro-[2 + 1] Cycloaddition. J Am Chem Soc 2023. [PMID: 37289993 DOI: 10.1021/jacs.3c00962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) crystal-to-crystal transition is an important method in crystal engineering because of its ability to directly create diverse crystal materials from one crystal. However, steering a 2D single-layer crystal-to-crystal transition on surfaces with high chemo- and stereoselectivity under ultra-high vacuum conditions is a great challenge because the transition is a complex dynamic process. Here, we report a highly chemoselective 2D crystal transition from radialene to cumulene with retention of stereoselectivity on Ag(111) via retro-[2 + 1] cycloaddition of three-membered carbon rings and directly visualize the transition process involving a stepwise epitaxial growth mechanism by the combination of scanning tunneling microscopy and non-contact atomic force microscopy. Using progression annealing, we found that isocyanides on Ag(111) at a low annealing temperature underwent sequential [1 + 1 + 1] cycloaddition and enantioselective molecular recognition based on C-H···Cl hydrogen bonding interactions to form 2D triaza[3]radialene crystals. In contrast, a higher annealing temperature induced the transformation of triaza[3]radialenes to generate trans-diaza[3]cumulenes, which were further assembled into 2D cumulene-based crystals through twofold N-Ag-N coordination and C-H···Cl hydrogen bonding interactions. By combining the observed distinct transient intermediates and density functional theory calculations, we demonstrate that the retro-[2 + 1] cycloaddition reaction proceeds via the ring opening of a three-membered carbon ring, sequential dechlorination/hydrogen passivation, and deisocyanation. Our findings provide new insights into the growth mechanism and dynamics of 2D crystals and have implications for controllable crystal engineering.
Collapse
Affiliation(s)
- Jian-Wei Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ying Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li-Xia Kang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guang-Yan Xing
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zheng-Yang Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ya-Cheng Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
6
|
Hou R, Guo Y, Yi Z, Zhang Z, Zhang C, Xu W. Construction and Structural Transformation of Metal-Organic Nanostructures Induced by Alkali Metals and Alkali Metal Salts. J Phys Chem Lett 2023; 14:3636-3642. [PMID: 37026779 DOI: 10.1021/acs.jpclett.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Metal-organic nanostructures are attractive in a variety of scientific fields, such as biomedicine, energy harvesting, and catalysis. Alkali-based metal-organic nanostructures have been extensively fabricated on surfaces based on pure alkali metals and alkali metal salts. However, their differences in the construction of alkali-based metal-organic nanostructures have been less discussed, and the influence on structural diversity remains elusive. In this work, from the interplay of scanning tunneling microscopy imaging and density functional theory calculations, we constructed Na-based metal-organic nanostructures by applying Na and NaCl as sources of alkali metals and visualized the structural transformations in real space. Moreover, a reverse structural transformation was achieved by dosing iodine into the Na-based metal-organic nanostructures, revealing the connections and differences between NaCl and Na in the structural evolutions, which provided fundamental insights into the evolution of electrostatic ionic interactions and the precise fabrication of alkali-based metal-organic nanostructures.
Collapse
Affiliation(s)
- Rujia Hou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yuan Guo
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Zewei Yi
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhaoyu Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Wei Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, People's Republic of China
| |
Collapse
|
7
|
Ordered Patterns of Copper Phthalocyanine Nanoflowers Grown Around Fe Islands on Au(111). J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Monte Carlo Simulations of the Metal-Directed Self-Assembly of Y-Shaped Positional Isomers. CRYSTALS 2022. [DOI: 10.3390/cryst12040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rational fabrication of low-dimensional materials with a well-defined topology and functions is an incredibly important aspect of nanotechnology. In particular, the on-surface synthesis (OSS) methods based on the bottom-up approach enable a facile construction of sophisticated molecular architectures unattainable by traditional methods of wet chemistry. Among such supramolecular constructs, especially interesting are the surface-supported metal–organic networks (SMONs), composed of low-coordinated metal atoms and π-aromatic bridging linkers. In this work, the lattice Monte Carlo (MC) simulation technique was used to extract the chemical information encoded in a family of Y-shaped positional isomers co-adsorbed with trivalent metal atoms on a flat metallic surface with (111) geometry. Depending on the intramolecular distribution of active centers (within the simulated molecular bricks, we observed a metal-directed self-assembly of two-dimensional (2D) openwork patterns, aperiodic mosaics, and metal–organic ladders. The obtained theoretical findings could be especially relevant for the scanning tunneling microscopy (STM) experimentalists interested in a surface-assisted construction of complex nanomaterials stabilized by directional coordination bonds.
Collapse
|
9
|
Cai L, Huang Y, Wang D, Zhang W, Wang Z, Wee ATS. Supramolecular Tiling of a Conformationally Flexible Precursor. J Phys Chem Lett 2022; 13:2180-2186. [PMID: 35230119 DOI: 10.1021/acs.jpclett.2c00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular self-assembly offers a possible pathway for nanopatterning and functionality. In particular, molecular tiling such as trihexagonal tiling (also known as the Kagome lattice) has promising chemical and physical properties. Distorted Kagome lattices are not well understood due to their complexity, and studies of their controllable fabrication are few. Here, by employing a conformationally flexible precursor, 2,4,6-tris(3-bromophenyl)-1,3,5-triazine (mTBPT), we demonstrate two-dimensional distorted Kagome lattice p3, (333) by supramolecular self-assembly and achieve tuning of the metastable phases, including the homochiral porous network and distorted Kagome lattice p3, (333) by steering deposition rates on a cold Ag(111) substrate. By a combination of scanning tunneling microscopy and density functional theory calculations, the distorted Kagome lattice is energetically unfavorable but can be trapped at a high deposition rate, and the process mainly depends on surface kinetics. This work using conformationally flexible mTBPT molecules provides a pathway for the controllable growth of different phases, including metastable Kagome lattices.
Collapse
Affiliation(s)
- Liangliang Cai
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
| | - Yuli Huang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Dingguan Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
| | - Wenjing Zhang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Zhuo Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
| |
Collapse
|
10
|
|
11
|
Lopes Lage L, Latge A. Electronic fractal patterns in building Sierpinski-triangles molecular systems. Phys Chem Chem Phys 2022; 24:19576-19583. [DOI: 10.1039/d2cp02426h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Sierpinski Triangle (ST) is a fractal mathematical structure that has been used to explore the emergence of flat bands in lattices of different geometries and dimensions in condensed matter....
Collapse
|
12
|
Li SW, Zhang RX, Kang LX, Li DY, Xie YL, Wang CX, Liu PN. Steering Metal-Organic Network Structures through Conformations and Configurations on Surfaces. ACS NANO 2021; 15:18014-18022. [PMID: 34677047 DOI: 10.1021/acsnano.1c06615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular adsorption conformations and arrangement configurations on surfaces are important structural aspects of surface stereochemistry, but their roles in steering the structures of metal-organic networks (MONs) remain vague and unexplored. In this study, we constructed MONs by the coordination self-assembly of isocyanides on Cu(111) and Ag(111) surfaces and demonstrated that the MON structures can be steered by surface stereochemistry, including the adsorption conformations of the isocyanide molecules and the arrangement configurations of the coordination nodes and subunits. The coordination self-assembly of 1,4-phenylene diisocyanobenzene afforded a honeycomb MON consisting of 3-fold (isocyano)3-Cu motifs on a Cu(111) surface. In contrast, geometrically different chevron-shaped 1,3-phenylene diisocyanobenzene (m-DICB) failed to generate a MON, which is ascribable to its standing conformation on the Cu(111) surface. However, m-DICB was adsorbed in a flat conformation on a Ag(111) surface, which has a larger lattice constant than a Cu(111) surface, and smoothly underwent coordination self-assembly to form a MON consisting of (isocyano)3-Ag motifs. Interestingly, only C3-Ag nodes with heterotactic configurations could grow into larger subunits; those subunits with heterotactic configurations further grew into Sierpiński triangle fractals (up to fourth order), while subunits with homotactic configurations afforded a triangular MON.
Collapse
Affiliation(s)
- Shi-Wen Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruo-Xi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Li Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cheng-Xin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
13
|
Li C, Li R, Xu Z, Li J, Zhang X, Li N, Zhang Y, Shen Z, Tang H, Wang Y. Packing Biomolecules into Sierpiński Triangles with Global Organizational Chirality. J Am Chem Soc 2021; 143:14417-14421. [PMID: 34387475 DOI: 10.1021/jacs.1c05949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fractals are found in nature and play important roles in biological functions. However, it is challenging to controllably prepare biomolecule fractals. In this study, a series of Sierpiński triangles with global organizational chirality is successfully constructed by the coassembly of l-tryptophan and 1,3-bi(4-pyridyl)benzene molecules on Ag(111). The chirality is switched when replacing l-tryptophan by d-tryptophan. The fractal structures are characterized by low-temperature scanning tunneling microscopy at the single-molecule level. Density functional theory calculations reveal that intermolecular hydrogen bonds stabilize the Sierpiński triangles.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Ruoning Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Zhen Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Jie Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Xue Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Na Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Yajie Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Ziyong Shen
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Hao Tang
- CEMES-CNRS, Boîte Postale 94347, 31055 Toulouse, France
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing 100871, China.,Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Trembułowicz A, Sabik A, Grodzicki M. Au(100) as a Template for Pentacene Monolayer. Molecules 2021; 26:molecules26082393. [PMID: 33924122 PMCID: PMC8074322 DOI: 10.3390/molecules26082393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
The surface of quasi-hexagonal reconstructed Au(100) is used as the template for monolayer pentacene (PEN) self-assembly. The system is characterized by means of scanning tunneling microscopy at room temperature and under an ultra-high vacuum. A new modulated pattern of molecules with long molecular axes (MA) arranged along hex stripes is found. The characteristic features of the hex reconstruction are preserved herein. The assembly with MA across the hex rows leads to an unmodulated structure, where the molecular layer does not recreate the buckled hex phase. The presence of the molecules partly lifts the reconstruction-i.e., the gold hex phase is transformed into a (1×1) phase. The arrangement of PEN on the gold (1×1) structure is the same as that of the surrounding molecular domain on the reconstructed surface. The apparent height difference between phases allows for the distinction of the state of the underlying gold surface.
Collapse
|
15
|
Feng G, Shen Y, Yu Y, Liang Q, Dong J, Lei S, Hu W. Boronic ester Sierpiński triangle fractals: from precursor design to on-surface synthesis and self-assembling superstructures. Chem Commun (Camb) 2021; 57:2065-2068. [PMID: 33507169 DOI: 10.1039/d0cc07047e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we designed and synthesized a precursor with a three-fold node and successfully constructed covalent Sierpiński triangle (ST) fractals with boronic ester linkages both at the liquid/solid interface at room temperature and by thermal annealing in a water atmosphere under ambient conditions. Remarkably, large-scale ordered superstructures of covalent STs are constructed by thermal annealing, which paves the way for property investigation of STs.
Collapse
Affiliation(s)
- Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Liu B, Zhang S, Miao G, Guo J, Meng S, Wang W. Inspecting the nonbonding and antibonding orbitals in a surface-supported metal-organic framework. Chem Commun (Camb) 2021; 57:4580-4583. [PMID: 33956023 DOI: 10.1039/d1cc00506e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using low-temperature scanning tunnelling microscopy and spectroscopy, ligand field theory and density functional theory calculations, we revealed the spatial distribution and energy separation of the nonbonding and antibonding orbitals associated with the top-Ni atoms in a surface-supported Ni-TPyP metal-organic framework with dinuclear coordination centres.
Collapse
Affiliation(s)
- Bing Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shengjie Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guangyao Miao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Weihua Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|