1
|
Závodná A, Janovský P, Kolařík V, Ward JS, Prucková Z, Rouchal M, Rissanen K, Vícha R. Allosteric release of cucurbit[6]uril from a rotaxane using a molecular signal. Chem Sci 2024; 16:83-89. [PMID: 39568923 PMCID: PMC11575564 DOI: 10.1039/d4sc03970j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024] Open
Abstract
Rotaxanes can be regarded as storage systems for their wheel components, which broadens their application potential as a complement to the supramolecular systems that retain a mechanically interlocked structure. However, utilising rotaxanes in this way requires a method to release the wheel while preserving the integrity of all molecular constituents. Herein, we present simple rotaxanes based on cucurbit[6]uril (CB6), with an axis equipped with an additional binding motif that enables the binding of another macrocycle, cucurbit[7]uril (CB7). We demonstrate that the driving force behind the wheel dethreading originates from the binding of the signalling macrocycle to the allosteric site, leading to an increase in the system's strain. Consequently, the CB6 wheel leaves the rotaxane station overcoming the mechanical barrier. Portal-portal repulsive interactions between the two cucurbituril units play a crucial role in this process. Thus, the repulsive strength and the related rate of slipping off can be finely tuned by the length of the allosteric binding motif. Finally, we show that the CB6 wheel can be utilised within complexes with other guests in the mixture once released from the rotaxane.
Collapse
Affiliation(s)
- Aneta Závodná
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Petr Janovský
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Václav Kolařík
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Jas S Ward
- Department of Chemistry, University of Jyväskylä P.O. Box 35, Survontie 9 B 40014 Jyväskylä Finland
| | - Zdeňka Prucková
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Michal Rouchal
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Kari Rissanen
- Department of Chemistry, University of Jyväskylä P.O. Box 35, Survontie 9 B 40014 Jyväskylä Finland
| | - Robert Vícha
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| |
Collapse
|
2
|
Speakman NA, Heard AW, Nitschke JR. A Cu I6L 4 Cage Dynamically Reconfigures to Form Suit[4]anes and Selectively Bind Fluorinated Steroids. J Am Chem Soc 2024; 146:10234-10239. [PMID: 38578086 PMCID: PMC11027141 DOI: 10.1021/jacs.4c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Simple organic ligands can self-assemble with metal ions to generate metal-organic cages, whose cavities bind guests selectively. This binding may enable new methods of chemical separation or sensing, among other useful functions. Here we report the preparation of a CuI6L4 pseudo-octahedral metal-organic cage, the ligands of which self-assemble from simple organic building blocks. Temperature, solvent, and the presence of different guests governed which structure predominated from a dynamic mixture of cage diastereomers with different arrangements of right- or left-handed metal vertices. Dissolution in dimethyl sulfoxide or the binding of tetrahedral guests led to a chiral tetrahedral T-symmetric framework, whereas low temperatures favored the achiral S4-symmetric diastereomer. Tetrahedral guests with long arms were encapsulated to form mechanically bonded suit[4]anes, with guest arms protruding out through host windows. The cage was also observed to bind fluorinated steroids, an important class of drug molecules, but not non-fluorinated steroids, providing the basis for new separation processes.
Collapse
Affiliation(s)
- Natasha
M. A. Speakman
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Andrew W. Heard
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Astex
Pharmaceuticals, 436
Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K.
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Miton L, Antonetti É, García-López D, Nava P, Robert V, Albalat M, Vanthuyne N, Martinez A, Cotelle Y. A Cyclotriveratrylene Solvent-Dependent Chiral Switch. Chemistry 2024; 30:e202303294. [PMID: 37955588 DOI: 10.1002/chem.202303294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/14/2023]
Abstract
Chiral molecular switches are attracting attention as they could pave the way to chiral molecular machines. Herein, we report on the design and synthesis of a single molecule chiral switch based on a cyclotriveratrylene scaffold, in which the chirality inversion is controlled by the solvent. Hemicryptophanes are built around a C3 cyclotriveratrylene chiral unit, with either M or P handedness, connected to another tripod and usually displaying an "out" configuration. Here, we demonstrate that solvents are able to control the "in" and "out" configurations of the CTV unit, creating a chiral molecular switch from (M/P)"in" to (P/M)"out" handedness. The full characterization of the "in" and "out" configurations and of the chirality switch were made possible by combining NMR, HPLC, ECD, DFT and molecular dynamics. Interestingly, bulky aromatic solvents such as 2-t-butylphenol favor the "in" configuration while polar aprotic solvents such as acetone favor the "out" configuration. This chiral switch was found to be fully reversible allowing the system to oscillate between two different M and P configurations several times upon the action of solvents stimuli.
Collapse
Affiliation(s)
- Louise Miton
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Élise Antonetti
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Diego García-López
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Paola Nava
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Vincent Robert
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France
| | - Muriel Albalat
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Alexandre Martinez
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| | - Yoann Cotelle
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille, France
| |
Collapse
|
4
|
Lin CY, Hsu CH, Hung CM, Wu CC, Liu YH, Shi EHC, Lin TH, Hu YC, Hung WY, Wong KT, Chou PT. Entropy-driven charge-transfer complexation yields thermally activated delayed fluorescence and highly efficient OLEDs. Nat Chem 2024; 16:98-106. [PMID: 37884666 DOI: 10.1038/s41557-023-01357-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Exciplex-forming systems that display thermally activated delayed fluorescence are widely used for fabricating organic light-emitting diodes. However, their further development can be hindered through a lack of structural and thermodynamic characterization. Here we report the generation of inclusion complexes between a cage-like, macrocyclic, electron-accepting host (A) and various N-methyl-indolocarbazole-based electron-donating guests (D), which exhibit exciplex-like thermally activated delayed fluorescence via a through-space electron-transfer process. The D/A cocrystals are fully resolved by X-ray analyses, and UV-visible titration data show their formation to be an endothermic and entropy-driven process. Moreover, their emission can be fine-tuned through the molecular orbitals of the donor. Organic light-emitting diodes were fabricated using one of the D/A systems, and the maximum external quantum efficiency measured was 15.2%. An external quantum efficiency of 10.3% was maintained under a luminance of 1,000 cd m-2. The results show the potential of adopting inclusion complexation to better understand the relationships between the structure, formation thermodynamics and properties of exciplexes.
Collapse
Affiliation(s)
- Chun-Yen Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chieh-Ming Hung
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chi-Chi Wu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | - Tse-Hung Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yuan-Cheng Hu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Qin Y, Ling QH, Wang YT, Hu YX, Hu L, Zhao X, Wang D, Yang HB, Xu L, Tang BZ. Construction of Covalent Organic Cages with Aggregation-Induced Emission Characteristics from Metallacages for Mimicking Light-Harvesting Antenna. Angew Chem Int Ed Engl 2023; 62:e202308210. [PMID: 37452485 DOI: 10.1002/anie.202308210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
A series of covalent organic cages built from fluorophores capable of aggregation-induced emission (AIE) were elegantly prepared through the reduction of preorganized M2 (LA )3 (LB )2 -type metallacages, simultaneously taking advantage of the synthetic accessibility and well-defined shapes and sizes of metallacages, the good chemical stability of the covalent cages as well as the bright emission of AIE fluorophores. Moreover, the covalent cages could be further post-synthetically modified into an amide-functionalized cage with a higher quantum yield. Furthermore, these presented covalent cages proved to be good energy donors and were used to construct light-harvesting systems employing Nile Red as an energy acceptor. These light-harvesting systems displayed efficient energy transfer and relatively high antenna effect, which enabled their use as efficient photocatalysts for a dehalogenation reaction. This research provides a new avenue for the development of luminescent covalent cages for light-harvesting and photocatalysis.
Collapse
Affiliation(s)
- Yi Qin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qing-Hui Ling
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu-Te Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
6
|
Abstract
Porous organic cages (POCs) are a relatively new class of low-density crystalline materials that have emerged as a versatile platform for investigating molecular recognition, gas storage and separation, and proton conduction, with potential applications in the fields of porous liquids, highly permeable membranes, heterogeneous catalysis, and microreactors. In common with highly extended porous structures, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), POCs possess all of the advantages of highly specific surface areas, porosities, open pore channels, and tunable structures. In addition, they have discrete molecular structures and exhibit good to excellent solubilities in common solvents, enabling their solution dispersibility and processability─properties that are not readily available in the case of the well-established, insoluble, extended porous frameworks. Here, we present a critical review summarizing in detail recent progress and breakthroughs─especially during the past five years─of all the POCs while taking a close look at their strategic design, precise synthesis, including both irreversible bond-forming chemistry and dynamic covalent chemistry, advanced characterization, and diverse applications. We highlight representative POC examples in an attempt to gain some understanding of their structure-function relationships. We also discuss future challenges and opportunities in the design, synthesis, characterization, and application of POCs. We anticipate that this review will be useful to researchers working in this field when it comes to designing and developing new POCs with desired functions.
Collapse
Affiliation(s)
- Xinchun Yang
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Zakir Ullah
- Convergence Research Center for Insect Vectors, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Cafer T Yavuz
- Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955, Saudi Arabia
- Advanced Membranes & Porous Materials Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
- KAUST Catalysis Center, PSE, KAUST, 4700 KAUST, Thuwal 23955, Saudi Arabia
| |
Collapse
|
7
|
Sun YL, Wang Z, Ma H, Zhang QP, Yang BB, Meng X, Zhang Y, Zhang C. Chiral emissive porous organic cages. Chem Commun (Camb) 2023; 59:302-305. [PMID: 36507910 DOI: 10.1039/d2cc05283k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A pair of chiral, emissive and porous tubular multi-functional organic molecular cages were synthesized easily by imine chemistry of 4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)-tetrabenzaldehyde (ETTBA) with (R,R)- or (S,S)-diaminocyclohexane (CHDA). It was found that the chirality of CHDA was transferred and amplified to tetraphenylethylene (TPE) in the process of formation of cages, which further endowed the cages with circularly polarized luminescence (CPL) characteristics. As a result of the synergy of the chirality and porous structure in the solid state, both cages exhibited a good chiral adsorption enantioselectivity to a series of aromatic racemates.
Collapse
Affiliation(s)
- Yu-Ling Sun
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Technology Institute, National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Hui Ma
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Qing-Pu Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bin-Bin Yang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xianggao Meng
- College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Yaohua Zhang
- Technology R&D Center, Hubei Tobacco (Group) Co., Ltd, Wuhan, 430070, China.
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
8
|
Chakraborty D, Saha R, Clegg JK, Mukherjee PS. Selective separation of planar and non-planar hydrocarbons using an aqueous Pd 6 interlocked cage. Chem Sci 2022; 13:11764-11771. [PMID: 36320911 PMCID: PMC9580621 DOI: 10.1039/d2sc04660a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) find multiple applications ranging from fabric dyes to optoelectronic materials. Hydrogenation of PAHs is often employed for their purification or derivatization. However, separation of PAHs from their hydrogenated analogues is challenging because of their similar physical properties. An example of such is the separation of 9,10-dihydroanthracene from phenanthrene/anthracene which requires fractional distillation at high temperature (∼340 °C) to obtain pure anthracene/phenanthrene in coal industry. Herein we demonstrate a new approach for this separation at room temperature using a water-soluble interlocked cage (1) as extracting agent by host-guest chemistry. The cage was obtained by self-assembly of a triimidazole donor L·HNO3 with cis-[(tmeda)Pd(NO3)2] (M) [tmeda = N,N,N',N'-tetramethylethane-1,2-diamine]. 1 has a triply interlocked structure with an inner cavity capable of selectively binding planar aromatic guests.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
9
|
Dong X, Dai X, Li G, Zhang Y, Xu X, Liu Y. Conformationally Confined Emissive Cationic Macrocycle with Photocontrolled Organelle-Specific Translocation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201962. [PMID: 35713271 PMCID: PMC9376817 DOI: 10.1002/advs.202201962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The optimization of molecular conformation and aggregation modes is of great significance in creation of new luminescent materials for biochemical research and medical diagnostics. Herein, a highly emissive macrocycle (1) is reported, which is constructed by the cyclization reaction of triphenylamine with benzyl bromide and exhibits very distinctive photophysical performance both in aqueous solution and the solid state. Structural analysis reveals that the 1 can form self-interpenetrated complex and emit bright yellow fluorescence in the crystal lattice. The distorted yet symmetrical structure can endow 1 with unique two-photon absorption property upon excitation by near-infrared light. Also, 1 can be utilized as an efficient photosensitizer to produce singlet oxygen (1 O2 ) both in inanimate milieu and under cellular environment. More intriguingly, due to the strong association of 1 with negatively charged biomacromolecules, organelle-specific migration is achieved from lysosome to nucleus during the 1 O2 -induced cell apoptosis process. To be envisaged, this conformationally confined cationic macrocycle with photocontrolled lysosome-to-nucleus translocation may provide a feasible approach for in situ identifying different biospecies and monitoring physiological events at subcellular level.
Collapse
Affiliation(s)
- Xiaoyun Dong
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Xianyin Dai
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Guorong Li
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Ying‐Ming Zhang
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Xiufang Xu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| |
Collapse
|
10
|
Chakraborty D, Mukherjee PS. Recent trends in organic cage synthesis: push towards water-soluble organic cages. Chem Commun (Camb) 2022; 58:5558-5573. [PMID: 35420101 DOI: 10.1039/d2cc01014c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research on organic cages has blossomed over the past few years into a mature field of study which can contribute to solving some of the challenging problems. In this review we aim to showcase the recent trends in synthesis of organic cages including a brief discussion on their use in catalysis, gas sorption, host-guest chemistry and energy transfer. Among the organic cages, water-soluble analogues are a special class of compounds which have gained renewed attention in recent times. Due to their advantage of being compatible with water, such cages have the potential of showing biomimetic activities and can find use in drug delivery and also as hosts for catalysis in aqueous medium. Hence, the synthetic strategies for the formation of water-soluble organic cages shall be discussed along with their potential applications.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
11
|
Abstract
SignificanceDuring the past decades, the development of efficient methodologies for the creation of mechanically interlocked molecules (MIMs), such as catenanes and rotaxanes, has not only laid the foundation for the design and syntheses of artificial molecular machines (AMMs) but also opened up new research opportunities in multiple disciplines, ranging from contemporary chemistry to materials science. In this study, we describe a suitane-based strategy for the construction of three-dimensional (3D) catenanes, a subset of MIMs that are far from easy to make. Together with synthetic methodologies based on the metal coordination and dynamic covalent chemistry, this approach brings us one step closer to realizing routine syntheses of 3D catenanes.
Collapse
|
12
|
Wang Z, Yang BB, Fang ZJ, Ou Q, Ma H, Zhang QP, Sun YL, Zhang C. Emissive oxidase-like nanozyme based on an organic molecular cage. Chem Commun (Camb) 2021; 57:11541-11544. [PMID: 34664563 DOI: 10.1039/d1cc04430c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, we introduced four "claw-like" units of dipicolylamine (DPA) to a tetraphenylethylene (TPE)-based organic molecular cage (DPA-TPE-Cage). Coordinated with Zn2+ ions, the obtained ZnDPA-TPE-Cage exhibited aggregation induced emission (AIE) effects and oxidase-like properties, which endowed it with the ability to selectively image and kill Gram-positive bacteria S. aureus efficiently.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bin-Bin Yang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zi-Jun Fang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Qiang Ou
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Hui Ma
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Qing-Pu Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yu-Ling Sun
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
13
|
Matsumoto K, Yamashita K, Sakoda Y, Ezoe H, Tanaka Y, Okazaki T, Ohkita M, Tanaka S, Aoki Y, Kiriya D, Kashimura S, Maekawa M, Kuroda‐Sowa T, Okubo T. Organic Thin‐film Solar Cells Using Benzotrithiophene Derivatives Bearing Acceptor Units as Non‐Fullerene Acceptors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kouichi Matsumoto
- Department of Chemistry School of Science and Engineering Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| | - Kazuhiro Yamashita
- Department of Chemistry School of Science and Engineering Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| | - Yuuki Sakoda
- Department of Chemistry School of Science and Engineering Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| | - Hinata Ezoe
- Department of Chemistry School of Science and Engineering Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| | - Yuki Tanaka
- Department of Chemistry School of Science and Engineering Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| | - Tatsuya Okazaki
- Department of Chemistry School of Science and Engineering Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| | - Misaki Ohkita
- Department of Chemistry School of Science and Engineering Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| | - Senku Tanaka
- Department of Electric and Electronic Engineering Faculty of Science and Engineering Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
- Research Institute for Science and Technology Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| | - Yuki Aoki
- Department of Physics and Electronics Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku Sakai-shi Osaka 599-8531 Japan
| | - Daisuke Kiriya
- Department of Physics and Electronics Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku Sakai-shi Osaka 599-8531 Japan
| | - Shigenori Kashimura
- Department of Chemistry School of Science and Engineering Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| | - Masahiko Maekawa
- Research Institute for Science and Technology Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| | - Takayoshi Kuroda‐Sowa
- Department of Chemistry School of Science and Engineering Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| | - Takashi Okubo
- Department of Chemistry School of Science and Engineering Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
- Research Institute for Science and Technology Kindai University Kowakae 3-4-1 Higashi-Osaka Osaka 577-8502 Japan
| |
Collapse
|
14
|
Observation of a 3-in-1 Russian-doll-like Complex in Solution. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Xu H, Lin MD, Yuan J, Zhou B, Mu Y, Huo Y, Zhu K. Fluorescence emission enhancement of a T-shaped benzimidazole with a mechanically-interlocked 'suit'. Chem Commun (Camb) 2021; 57:3239-3242. [PMID: 33646217 DOI: 10.1039/d0cc07471c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A fluorescent T-shaped benzimidazole was successfully designed and interlocked in a bicyclic macrocycle to form a suit[1]ane through supramolecular templated-synthesis. Compared with the bare fluorophore, suit[1]ane requires nearly two times the concentration to initialize the aggregation-caused quenching effect in solution. Furthermore, an 8-fold higher solid-state fluorescence quantum yield (21.7%) is also achieved. By taking advantage of mechanical bonding and molecular packing, such fluorescence emission enhancement through formation of a suitane opens the way to new complex fluorescent materials.
Collapse
Affiliation(s)
- Houyang Xu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | | | | | | | | | | | | |
Collapse
|