1
|
Chen MM, Li Y, Zhu Y, Geng WC, Chen FY, Li JJ, Wang ZH, Hu XY, Tang Q, Yu Y, Sun T, Guo DS. Supramolecular 3 in 1: A Lubrication and Co-Delivery System for Synergistic Advanced Osteoarthritis Therapy. ACS NANO 2024; 18:13117-13129. [PMID: 38727027 DOI: 10.1021/acsnano.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuqiao Li
- Spine Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Yujie Zhu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ze-Han Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qiong Tang
- Department of Respiratory, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tianwei Sun
- Spine Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| |
Collapse
|
2
|
Ning S, Wang C, Zhao L, Yang J, Shi X, Zheng Y. Lecithin/chitosan nanoparticle drug carrier improves anti-tumor efficacy of Monascus pigment rubropunctatin. Int J Biol Macromol 2023:125058. [PMID: 37236571 DOI: 10.1016/j.ijbiomac.2023.125058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Rubropunctatin, a metabolite isolated from the fungi of the genus Monascus, is a natural lead compound applied for the suppression of tumors with good anti-cancer activity. However, its poor aqueous solubility has limited its further clinical development and utilization. Lecithin and chitosan are excellently biocompatible and biodegradable natural materials, which have been approved by the FDA as drug carrier. Here, we report for the first time the construction of a lecithin/chitosan nanoparticle drug carrier of the Monascus pigment rubropunctatin by electrostatic self-assembly between lecithin and chitosan. The nanoparticles are near-spherical with a size 110-120 nm. They are soluble in water and possess excellent homogenization capacity and dispersibility. Our in vitro drug release assay showed a sustained release of rubropunctatin. CCK-8 assays revealed that lecithin/chitosan nanoparticles loaded with rubropunctatin (RCP-NPs) had significantly enhanced cytotoxicity against mouse mammary cancer 4T1 cells. The flow cytometry results revealed that RCP-NPs significantly boosted cellular uptake and apoptosis. The tumor-bearing mice models we developed indicated that RCP-NPs effectively inhibited tumor growth. Our present findings suggest that lecithin/chitosan nanoparticle drug carriers improve the anti-tumor effect of the Monascus pigment rubropunctatin.
Collapse
Affiliation(s)
- Shilong Ning
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China
| | - Congchun Wang
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China
| | - Li Zhao
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China
| | - Yunquan Zheng
- College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, 2 Xueyuan Road, Fuzhou 350116, China.
| |
Collapse
|
3
|
Zhong QZ, Richardson JJ, Tian Y, Tian H, Cui J, Mann S, Caruso F. Modular Metal-Quinone Networks with Tunable Architecture and Functionality. Angew Chem Int Ed Engl 2023; 62:e202218021. [PMID: 36732289 DOI: 10.1002/anie.202218021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Nanostructured materials with tunable structures and functionality are of interest in diverse areas. Herein, metal ions are coordinated with quinones through metal-acetylacetone coordination bonds to generate a class of structurally tunable, universally adhesive, hydrophilic, and pH-degradable materials. A library of metal-quinone networks (MQNs) is produced from five model quinone ligands paired with nine metal ions, leading to the assembly of particles, tubes, capsules, and films. Importantly, MQNs show bidirectional pH-responsive disassembly in acidic and alkaline solutions, where the quinone ligands mediate the disassembly kinetics, enabling temporal and spatial control over the release of multiple components using multilayered MQNs. Leveraging this tunable release and the inherent medicinal properties of quinones, MQN prodrugs with a high drug loading (>89 wt %) are engineered using doxorubicin for anti-cancer therapy and shikonin for the inhibition of the main protease in the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Qi-Zhi Zhong
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Haijiang Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
4
|
Satange R, Rode AB, Hou MH. Revisiting recent unusual drug-DNA complex structures: Implications for cancer and neurological disease diagnostics and therapeutics. Bioorg Med Chem 2022; 76:117094. [PMID: 36410206 DOI: 10.1016/j.bmc.2022.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
DNA plays a crucial role in various biological processes such as protein production, replication, recombination etc. by adopting different conformations. Targeting these conformations by small molecules is not only important for disease therapy, but also improves our understanding of the mechanisms of disease development. In this review, we provide an overview of some of the most recent ligand-DNA complexes that have diagnostic and therapeutic applications in neurological diseases caused by abnormal repeat expansions and in cancer associated with mismatches. In addition, we have discussed important implications of ligands targeting higher-order structures, such as four-way junctions, G-quadruplexes and triplexes for drug discovery and DNA nanotechnology. We provide an overview of the results and perspectives of such structural studies on ligand-DNA interactions.
Collapse
Affiliation(s)
- Roshan Satange
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Ambadas B Rode
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana 121001, India
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
5
|
Gao P, Chen Y, Pan W, Li N, Liu Z, Tang B. Antitumor Agents Based on Metal–Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Lab Carbon Based Functional Materials and Devices Soochow University Suzhou 215123 Jiangsu China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
6
|
Gao P, Chen Y, Pan W, Li N, Liu Z, Tang B. Antitumor Agents Based on Metal–Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:16763-16776. [DOI: 10.1002/anie.202102574] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 01/12/2023]
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Lab Carbon Based Functional Materials and Devices Soochow University Suzhou 215123 Jiangsu China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|