1
|
Yan T, Chen Y, Mortishire-Smith B, Simeone A, Hofer A, Balasubramanian S. Selective Photocatalytic C-H Oxidation of 5-Methylcytosine in DNA. Angew Chem Int Ed Engl 2024:e202413593. [PMID: 39231378 DOI: 10.1002/anie.202413593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
Selective C-H activation on complex biological macromolecules is a key goal in the field of organic chemistry. It requires thermodynamically challenging chemical transformations to be delivered under mild, aqueous conditions. 5-Methylcytosine (5mC) is a fundamentally important epigenetic modification in DNA that has major implications for biology and has emerged as a vital biomarker. Selective functionalisation of 5mC would enable new chemical approaches to tag, detect and map DNA methylation to enhance the study and exploitation of this epigenetic feature. We demonstrate the first example of direct and selective chemical oxidation of 5mC to 5-formylcytosine (5fC) in DNA, employing a photocatalytic system. This transformation was used to selectively tag 5mC. We also provide proof-of-concept for deploying this chemistry for single-base resolution sequencing of 5mC and genetic bases adenine (A), cytosine (C), guanine (G), thymine (T) in DNA on a next-generation sequencing system. This work exemplifies how photocatalysis has the potential to transform the analysis of DNA.
Collapse
Affiliation(s)
- Tao Yan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yuqi Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ben Mortishire-Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Angela Simeone
- Cancer Research, UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Alexandre Hofer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Shankar Balasubramanian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cancer Research, UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| |
Collapse
|
2
|
Zhao Z, Yan W, Weng X. RNA modifications identification based on chemical reactions. Bioorg Med Chem 2024; 111:117861. [PMID: 39079454 DOI: 10.1016/j.bmc.2024.117861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
RNA modification identification is an emerging field in epigenetics due to its indispensable regulatory role in the cell life cycle. With advancements in identification methods, an increasing number of RNA modifications has been discovered, thereby driving the development of more efficient and accurate techniques for localizing modified RNAs and elucidating their functions. High-throughput sequencing approaches for modified RNA detection can be categorized into antibody-based, enzymatic-based, and chemical-labeling-based methods. Given the intrinsic chemical reactions involved in all biochemical processes, we provide a comprehensive review of recent advancements in artificial chemical labeling and transformations of ten distinct RNA modifications and their applications in sequencing. Our aim is to contribute to a deeper understanding of the mechanisms underlying these modifications. We focus on the chemical reactions associated with RNA modifications and briefly compare the advantages and disadvantages of detection methods based on these reactions. Additionally, we introduce several approaches that identify multiple modifications through chemical labeling. As the field of RNA modification research continues to expand, we anticipate that the techniques and insights presented in this review will serve as a valuable resource for future studies aimed at further elucidating the functional roles of RNA modifications in biological processes.
Collapse
Affiliation(s)
- Zhengjia Zhao
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, China; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan 430072, China
| | - Weikai Yan
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, China; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan 430072, China
| | - Xiaocheng Weng
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, China; College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan 430072, China.
| |
Collapse
|
3
|
Fan J, Gong H, Wang F, Wang L, Yu Y, Liu D, Yang W. Multiplexed electrochemical nucleic acid sensor based on visible light-mediated metal-free thiol-yne click reaction for simultaneous detection of different nucleic acid targets. Talanta 2024; 273:125856. [PMID: 38442565 DOI: 10.1016/j.talanta.2024.125856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Simultaneous detection of multiple tumor biomarkers with a simple and low-cost assay is crucial for early cancer detection and diagnosis. Herein, we presented a low-cost and simple assay for multiplexed detection of tumor biomarkers using a spatially separated electrodes strategy. The sensor is fabricated based on a metal-free thiol-yne click reaction, which is mediated by visible light, on commercially available indium tin oxide (ITO) electrodes. Four biomarkers, including p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA, were used as model analytes, and the corresponding oligonucleotide probes were modified on the desired electrode units sequentially with 530 nm irradiation light in the presence of photosensitizer Eosin Y. By this visible light-mediated coupling reaction, oligonucleotide probe densities of up to 9.2 ± 0.7 × 1010 molecules/cm2 were readily obtained on the ITO electrode surface. The proposed multiplexed E-NA sensor could detect four different nucleic acid targets concurrently without crosstalk among adjacent electrodes and was also successfully applied for detecting targets in a 20% fetal calf serum sample. The detection limits for p53 DNA, Brca2 DNA, K-ras DNA, and MicroRNA-204 RNA were 0.72 nM, 0.97 nM, 2.15 nM, and 1.73 nM, respectively. The developed approach not only has a great potential for developing cost-effective biosensors on affordable substrates for nucleic acid target detection, but also be easily extended to detect other targets by modifying the specific oligonucleotide probes anchored on the electrode.
Collapse
Affiliation(s)
- Jinlong Fan
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Hanlin Gong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Fan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Li Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150001, China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
4
|
Xie R, Li W, Ge Y, Zhou Y, Xiao G, Zhao Q, Han Y, Li Y, Chen G. Late-stage guanine C8-H alkylation of nucleosides, nucleotides, and oligonucleotides via photo-mediated Minisci reaction. Nat Commun 2024; 15:2549. [PMID: 38514662 PMCID: PMC10957873 DOI: 10.1038/s41467-024-46671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Chemically modified nucleosi(ti)des and functional oligonucleotides (ONs, including therapeutic oligonucleotides, aptamer, nuclease, etc.) have been identified playing an essential role in the areas of medicinal chemistry, chemical biology, biotechnology, and nanotechnology. Introduction of functional groups into the nucleobases of ONs mostly relies on the laborious de novo chemical synthesis. Due to the importance of nucleosides modification and aforementioned limitations of functionalizing ONs, herein, we describe a highly efficient site-selective alkylation at the C8-position of guanines in guanosine (together with its analogues), GMP, GDP, and GTP, as well as late-stage functionalization of dinucleotides and single-strand ONs (including ssDNA and RNA) through photo-mediated Minisci reaction. Addition of catechol to assist the formation of alkyl radicals via in situ generated boronic acid catechol ester derivatives (BACED) markedly enhances the yields especially for the reaction of less stable primary alkyl radicals, and is the key to success for the post-synthetic alkylation of ONs. This method features excellent chemoselectivity, no necessity for pre-protection, wide range of substrate scope, various free radical precursors, and little strand lesion. Downstream applications in disease treatment and diagnosis, or as biochemical probes to study biological processes after linking with suitable fluorescent compounds are expected.
Collapse
Affiliation(s)
- Ruoqian Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wanlu Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yuhua Ge
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - Yutong Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Chinese Academy of Sciences, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, Qinghai, People's Republic of China
| | - Guolan Xiao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qin Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yunxi Han
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yangyan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Gang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Chinese Academy of Sciences, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, Qinghai, People's Republic of China.
| |
Collapse
|
5
|
Simpson MM, Lam CC, Goodman JM, Balasubramanian S. Selective Functionalisation of 5-Methylcytosine by Organic Photoredox Catalysis. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202304756. [PMID: 38516645 PMCID: PMC10953388 DOI: 10.1002/ange.202304756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 03/23/2024]
Abstract
The epigenetic modification 5-methylcytosine plays a vital role in development, cell specific gene expression and disease states. The selective chemical modification of the 5-methylcytosine methyl group is challenging. Currently, no such chemistry exists. Direct functionalisation of 5-methylcytosine would improve the detection and study of this epigenetic feature. We report a xanthone-photosensitised process that introduces a 4-pyridine modification at a C(sp3)-H bond in the methyl group of 5-methylcytosine. We propose a reaction mechanism for this type of reaction based on density functional calculations and apply transition state analysis to rationalise differences in observed reaction efficiencies between cyanopyridine derivatives. The reaction is initiated by single electron oxidation of 5-methylcytosine followed by deprotonation to generate the methyl group radical. Cross coupling of the methyl radical with 4-cyanopyridine installs a 4-pyridine label at 5-methylcytosine. We demonstrate use of the pyridination reaction to enrich 5-methylcytosine-containing ribonucleic acid.
Collapse
Affiliation(s)
- Mathew M. Simpson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Ching Ching Lam
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Jonathan M. Goodman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Shankar Balasubramanian
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
- Cancer ResearchUKCambridge Institute Li Ka Shing CentreUniversity of CambridgeRobinson WayCB2 0RECambridgeUK
- School of Clinical MedicineUniversity of CambridgeCB2 0SPCambridgeUK
| |
Collapse
|
6
|
Simpson MM, Lam CC, Goodman JM, Balasubramanian S. Selective Functionalisation of 5-Methylcytosine by Organic Photoredox Catalysis. Angew Chem Int Ed Engl 2023; 62:e202304756. [PMID: 37118885 PMCID: PMC10952617 DOI: 10.1002/anie.202304756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 04/30/2023]
Abstract
The epigenetic modification 5-methylcytosine plays a vital role in development, cell specific gene expression and disease states. The selective chemical modification of the 5-methylcytosine methyl group is challenging. Currently, no such chemistry exists. Direct functionalisation of 5-methylcytosine would improve the detection and study of this epigenetic feature. We report a xanthone-photosensitised process that introduces a 4-pyridine modification at a C(sp3 )-H bond in the methyl group of 5-methylcytosine. We propose a reaction mechanism for this type of reaction based on density functional calculations and apply transition state analysis to rationalise differences in observed reaction efficiencies between cyanopyridine derivatives. The reaction is initiated by single electron oxidation of 5-methylcytosine followed by deprotonation to generate the methyl group radical. Cross coupling of the methyl radical with 4-cyanopyridine installs a 4-pyridine label at 5-methylcytosine. We demonstrate use of the pyridination reaction to enrich 5-methylcytosine-containing ribonucleic acid.
Collapse
Affiliation(s)
- Mathew M. Simpson
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Ching Ching Lam
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Jonathan M. Goodman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Shankar Balasubramanian
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
- Cancer ResearchUKCambridge Institute Li Ka Shing CentreUniversity of CambridgeRobinson WayCB2 0RECambridgeUK
- School of Clinical MedicineUniversity of CambridgeCB2 0SPCambridgeUK
| |
Collapse
|
7
|
Mortishire-Smith B, Becker SM, Simeone A, Melidis L, Balasubramanian S. A Photoredox Reaction for the Selective Modification of 5-Carboxycytosine in DNA. J Am Chem Soc 2023; 145:10505-10511. [PMID: 37141595 PMCID: PMC10197125 DOI: 10.1021/jacs.2c12558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 05/06/2023]
Abstract
Covalent epigenetic modifications contribute to the regulation of important cellular processes during development and differentiation, and changes in their genomic distribution and frequency are linked to the emergence of genetic disease states. Chemical and enzymatic methods that selectively target the orthogonal chemical functionality of epigenetic markers are central to the study of their distribution and function, and considerable research effort has been focused on the development of nondestructive sequencing approaches which preserve valuable DNA samples. Photoredox catalysis enables transformations with tunable chemoselectivity under mild, biocompatible reaction conditions. We report the reductive decarboxylation of 5-carboxycytosine via a novel iridium-based treatment, which represents the first application of visible-light photochemistry to epigenetic sequencing via direct base conversion. We propose that the reaction involves an oxidative quenching cycle beginning with single-electron reduction of the nucleobase by the photocatalyst, followed by hydrogen atom transfer from a thiol. The saturation of the C5-C6 backbone permits decarboxylation of the nonaromatic intermediate, and hydrolysis of the N4-amine constitutes a conversion from a cytosine derivative to a T-like base. This conversion demonstrates selectivity for 5-carboxycytosine over other canonical or modified nucleoside monomers, and is thereby applied to the sequencing of 5-carboxycytosine within modified oligonucleotides. The photochemistry explored in this study can also be used in conjunction with enzymatic oxidation by TET to profile 5-methylcytosine at single-base resolution. Compared to other base-conversion treatments, the rapid photochemical reaction takes place within minutes, which could provide advantages for high-throughput detection and diagnostic applications.
Collapse
Affiliation(s)
| | - Sidney M. Becker
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge, CB2 1EW, U.K.
| | - Angela Simeone
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge, CB2 1EW, U.K.
- Cancer
Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, U.K.
| | - Larry Melidis
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge, CB2 1EW, U.K.
- Cancer
Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, U.K.
| | - Shankar Balasubramanian
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge, CB2 1EW, U.K.
- Cancer
Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, U.K.
- School
of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, United Kingdom
| |
Collapse
|
8
|
Duff L, Meakin H, Richardson A, Greener AJ, Smith GWA, Ocaña I, Chechik V, James MJ. Denitrative Hydroxylation of Unactivated Nitroarenes. Chemistry 2023; 29:e202203807. [PMID: 36594445 DOI: 10.1002/chem.202203807] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 01/04/2023]
Abstract
A one-step method for the conversion of nitroarenes into phenols under operationally simple, transition-metal-free conditions is described. This denitrative functionalization protocol provides a concise and economical alternative to conventional three-step synthetic sequences. Experimental and computational studies suggest that nitroarenes may be substituted by an electron-catalysed radical-nucleophilic substitution (SRN 1) chain mechanism.
Collapse
Affiliation(s)
- Lee Duff
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Harry Meakin
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Adam Richardson
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Andrew J Greener
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - George W A Smith
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Ivan Ocaña
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Victor Chechik
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Michael J James
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
9
|
Wang S, Li T, Gu C, Han J, Zhao CG, Zhu C, Tan H, Xie J. Decarboxylative tandem C-N coupling with nitroarenes via S H2 mechanism. Nat Commun 2022; 13:2432. [PMID: 35508545 PMCID: PMC9068905 DOI: 10.1038/s41467-022-30176-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Aromatic tertiary amines are one of the most important classes of organic compounds in organic chemistry and drug discovery. It is difficult to efficiently construct tertiary amines from primary amines via classical nucleophilic substitution due to consecutive overalkylation. In this paper, we have developed a radical tandem C-N coupling strategy to efficiently construct aromatic tertiary amines from commercially available carboxylic acids and nitroarenes. A variety of aromatic tertiary amines can be furnished in good yields (up to 98%) with excellent functional group compatibility under mild reaction conditions. The use of two different carboxylic acids also allows for the concise synthesis of nonsymmetric aromatic tertiary amines in satisfactory yields. Mechanistic studies suggest the intermediacy of the arylamine–(TPP)Fe(III) species and might provide a possible evidence for an SH2 (bimolecular homolytic substitution) pathway in the critical C-N bond formation step. Aromatic tertiary amines are versatile building blocks in organic synthesis. In this article, the authors report on an iron-catalysed reaction for the decarboxylative C-N coupling from carboxylic acids and nitroarenes, leading to non-symmetric tertiary aromatic amines.
Collapse
Affiliation(s)
- Shuaishuai Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Tingrui Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chengyihan Gu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 200032, Shanghai, China. .,Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, 450001, Zhengzhou, China.
| | - Hairen Tan
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China. .,Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082, Changsha, China.
| |
Collapse
|
10
|
Wang B, Zhou MJ, Zhou QL. Visible-Light-Induced α,γ-C(sp 3)-H Difunctionalization of Piperidines. Org Lett 2022; 24:2894-2898. [PMID: 35416677 DOI: 10.1021/acs.orglett.2c00831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we describe a novel protocol for visible-light-induced α,γ-C(sp3)-H difunctionalization of piperidines. This redox-neutral, atom-economical protocol, which exhibits a broad substrate scope and good functional group compatibility, constitutes a concise, practical method for constructing piperidine-containing bridged-ring molecules. Preliminary mechanistic studies indicated that highly regioselective activation of the inert γ-C(sp3)-H bond of piperidines was achieved through a 1,5-hydrogen atom transfer reaction of a nitrogen radical generated in situ.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Min-Jie Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
11
|
Chung Kim Chung K, Mahdavi-Amiri Y, Korfmann C, Hili R. PhOxi-Seq: Single-Nucleotide Resolution Sequencing of N2-Methylation at Guanosine in RNA by Photoredox Catalysis. J Am Chem Soc 2022; 144:5723-5727. [PMID: 35316019 DOI: 10.1021/jacs.2c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemical modifications regulate the fate and function of cellular RNAs. Newly developed sequencing methods have allowed a deeper understanding of the biological role of RNA modifications; however, the vast majority of post-transcriptional modifications lack a well-defined sequencing method. Here, we report a photo-oxidative sequencing (PhOxi-seq) approach for guanosine N2-methylation, a common methylation mark seen in N2-methylguanosine (m2G) and N2,N2-dimethylguanosine (m22G). Using visible light-mediated organic photoredox catalysis, m2G and m22G are chemoselectively oxidized in the presence of canonical RNA nucleosides, which results in a strong mutation signature observed during sequencing. PhOxi-seq was demonstrated on various tRNAs and rRNA to reveal N2-methylation with excellent response and markedly improved read-through at m22G sites.
Collapse
Affiliation(s)
- Kimberley Chung Kim Chung
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Yasaman Mahdavi-Amiri
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Christopher Korfmann
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Ryan Hili
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
12
|
Fleming AM, Chabot MB, Nguyen NLB, Burrows CJ. Collateral Damage Occurs When Using Photosensitizer Probes to Detect or Modulate Nucleic Acid Modifications. Angew Chem Int Ed Engl 2022; 61:e202110649. [PMID: 34919767 PMCID: PMC8810719 DOI: 10.1002/anie.202110649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 12/23/2022]
Abstract
Nucleic acids are chemically modified to fine-tune their properties for biological function. Chemical tools for selective tagging of base modifications enables new approaches; the photosensitizers riboflavin and anthraquinone were previously proposed to oxidize N6 -methyladenine (m6 A) or 5-methylcytosine (5mdC) selectively. Herein, riboflavin, anthraquinone, or Rose Bengal were allowed to react with the canonical nucleosides dA, dC, dG, and dT, and the modified bases 5mdC, m6 A, 8-oxoguanine (dOG), and 8-oxoadenine (dOA) to rank their reactivities. The nucleoside studies reveal that dOG is the most reactive and that the native nucleoside dG is higher or similar in reactivity to 5mdC or m6 A; competition in both single- and double-stranded DNA of dG vs. 5mdC or 6mdA for oxidant confirmed that dG is favorably oxidized. Thus, photosensitizers are promiscuous nucleic acid oxidants with poor chemoselectivity that will negatively impact attempts at targeted oxidation of modified nucleotides in cells.
Collapse
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850
| | - Michael B. Chabot
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850
| | - Ngoc L. B. Nguyen
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850
| |
Collapse
|
13
|
Xie Y, Han S, Li Q, Fang Z, Yang W, Wei Q, Wang Y, Zhou Y, Weng X, Zhou X. Transcriptome-wide profiling of N6-methyladenosine via a selective chemical labeling method. Chem Sci 2022; 13:12149-12157. [PMID: 36349098 PMCID: PMC9600483 DOI: 10.1039/d2sc03181g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
Studies of chemical modifications on RNA have ushered in the field of epitranscriptomics. N6-Methyladenosine (m6A) is the most typical RNA modification and is indispensable for basic biological processes. This study presents a chemical pulldown method (m6A-ORL-Seq) for transcriptome-wide profiling of m6A. Moreover, chemical labeling results in a specific reverse transcription (RT) truncation signature. This study has identified four thousand high-confidence m6A sites at single-base resolution in the human transcriptome. Unlike previously reported methods based on m6A-antibody or m6A-sensitive enzymes, the antibody/enzyme-free chemical method provides a new perspective for single-base m6A detection at the transcriptome level. m6A-ORL-Seq: A chemical labeling method for transcriptome-wide m6A profiling.![]()
Collapse
Affiliation(s)
- Yalun Xie
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Qiming Li
- College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Zhentian Fang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Qi Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Yu Zhou
- College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Xiong J, Wang P, Shao WX, Li G, Ding JH, Xie NB, Wang M, Cheng QY, Xie C, Feng YQ, Ci W, Yuan BF. Genome-wide mapping of N4-methylcytosine at single-base resolution by APOBEC3A-mediated deamination sequencing. Chem Sci 2022; 13:9960-9972. [PMID: 36128236 PMCID: PMC9430668 DOI: 10.1039/d2sc02446b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
N4-methylcytosine (4mC) is a natural DNA modification occurring in thermophiles and plays important roles in restriction-modification (R-M) systems in bacterial genomes. However, the precise location and sequence context of 4mC in the whole genome are limited. In this study, we developed an APOBEC3A-mediated deamination sequencing (4mC-AMD-seq) method for genome-wide mapping of 4mC at single-base resolution. In the 4mC-AMD-seq method, cytosine and 5-methylcytosine (5mC) are deaminated by APOBEC3A (A3A) protein to generate uracil and thymine, both of which are read as thymine in sequencing, while 4mC is resistant to deamination and therefore read as cytosine. Thus, the readouts of cytosines from sequencing could manifest the original 4mC sites in genomes. With the 4mC-AMD-seq method, we achieved the genome-wide mapping of 4mC in Deinococcus radiodurans (D. radiodurans). In addition, we confirmed that 4mC, but not 5mC, was the major modification in the D. radiodurans genome. We identified 1586 4mC sites in the genome of D. radiodurans, among which 564 sites were located in the CCGCGG motif. The average methylation levels in the CCGCGG motif and non-CCGCGG sequence were 70.0% and 22.8%, respectively. We envision that the 4mC-AMD-seq method will facilitate the investigation of 4mC functions, including the 4mC-involved R-M systems, in uncharacterized but potentially useful strains. Genome-wide mapping of N4-methylcytosine (4mC) at single-base resolution with APOBEC3A-mediated deamination sequencing (4mC-AMD-seq).![]()
Collapse
Affiliation(s)
- Jun Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Wang
- Key Laboratory of Genomics and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Xuan Shao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Gaojie Li
- Key Laboratory of Genomics and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang-Hui Ding
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Neng-Bin Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Min Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qing-Yun Cheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Weimin Ci
- Key Laboratory of Genomics and Precision Medicine, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Feng Yuan
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Public Health, Wuhan University, Wuhan 430071, China
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, China
| |
Collapse
|
15
|
Fleming AM, Chabot MB, Nguyen NLB, Burrows CJ. Collateral Damage Occurs When Using Photosensitizer Probes to Detect or Modulate Nucleic Acid Modifications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City Ut84112-0850 USA
| | - Michael B. Chabot
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City Ut84112-0850 USA
| | - Ngoc L. B. Nguyen
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City Ut84112-0850 USA
| | - Cynthia J. Burrows
- Department of Chemistry University of Utah 315 S 1400 East Salt Lake City Ut84112-0850 USA
| |
Collapse
|
16
|
Manna K, Ganguly T, Baitalik S, Jana R. Visible-Light- and PPh 3-Mediated Direct C-N Coupling of Nitroarenes and Boronic Acids at Ambient Temperature. Org Lett 2021; 23:8634-8639. [PMID: 34643396 DOI: 10.1021/acs.orglett.1c03343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We present here a metal-free, visible-light- and triphenylphosphine-mediated intermolecular, reductive amination between nitroarenes and boronic acids at ambient temperature without any photocatalyst. Mechanistically, a slow reduction of nitroarenes to a nitroso and, finally, a nitrene intermediate occurs that leads to the amination product with concomitant 1,2-aryl/-alkyl migration from a boronate complex. A wide range of nitroarenes underwent C-N coupling with aryl-/alkylboronic acids providing high yields.
Collapse
Affiliation(s)
- Kartic Manna
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Tanusree Ganguly
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| |
Collapse
|
17
|
Liu W, Watson EE, Winssinger N. Photocatalysis in Chemical Biology: Extending the Scope of Optochemical Control and Towards New Frontiers in Semisynthetic Bioconjugates and Biocatalysis. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Weilong Liu
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| | - Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest Ansermet CH-1211 Geneva Switzerland
| |
Collapse
|
18
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
19
|
Li X, Zhang Z, Luo X, Schrier J, Yang AD, Wu TP. The exploration of N6-deoxyadenosine methylation in mammalian genomes. Protein Cell 2021; 12:756-768. [PMID: 34405377 PMCID: PMC8464638 DOI: 10.1007/s13238-021-00866-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/12/2021] [Indexed: 11/11/2022] Open
Abstract
N6-methyladenine (N6-mA, m6dA, or 6mA), a prevalent DNA modification in prokaryotes, has recently been identified in higher eukaryotes, including mammals. Although 6mA has been well-studied in prokaryotes, the function and regulatory mechanism of 6mA in eukaryotes are still poorly understood. Recent studies indicate that 6mA can serve as an epigenetic mark and play critical roles in various biological processes, from transposable-element suppression to environmental stress response. Here, we review the significant advances in methodology for 6mA detection and major progress in understanding the regulation and function of this non-canonical DNA methylation in eukaryotes, predominantly mammals.
Collapse
Affiliation(s)
- Xuwen Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zijian Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xinlong Luo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob Schrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew D Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Tao P Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Bartee D, Thalalla Gamage S, Link CN, Meier JL. Arrow pushing in RNA modification sequencing. Chem Soc Rev 2021; 50:9482-9502. [PMID: 34259263 DOI: 10.1039/d1cs00214g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methods to accurately determine the location and abundance of RNA modifications are critical to understanding their functional role. In this review, we describe recent efforts in which chemical reactivity and next-generation sequencing have been integrated to detect modified nucleotides in RNA. For eleven exemplary modifications, we detail chemical, enzymatic, and metabolic labeling protocols that can be used to differentiate them from canonical nucleobases. By emphasizing the molecular rationale underlying these detection methods, our survey highlights new opportunities for chemistry to define the role of RNA modifications in disease.
Collapse
Affiliation(s)
- David Bartee
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler St, Frederick, MD 21702, USA.
| | - Supuni Thalalla Gamage
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler St, Frederick, MD 21702, USA.
| | - Courtney N Link
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler St, Frederick, MD 21702, USA.
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 538 Chandler St, Frederick, MD 21702, USA.
| |
Collapse
|
21
|
Zhao H, Leonori D. Minimization of Back-Electron Transfer Enables the Elusive sp 3 C-H Functionalization of Secondary Anilines. Angew Chem Int Ed Engl 2021; 60:7669-7674. [PMID: 33459469 PMCID: PMC8048505 DOI: 10.1002/anie.202100051] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/14/2021] [Indexed: 02/02/2023]
Abstract
Anilines are some of the most used class of substrates for application in photoinduced electron transfer. N,N-Dialkyl-derivatives enable radical generation α to the N-atom by oxidation followed by deprotonation. This approach is however elusive to monosubstituted anilines owing to fast back-electron transfer (BET). Here we demonstrate that BET can be minimised by using photoredox catalysis in the presence of an exogenous alkylamine. This approach synergistically aids aniline SET oxidation and then accelerates the following deprotonation. In this way, the generation of α-anilinoalkyl radicals is now possible and these species can be used in a general sense to achieve divergent sp3 C-H functionalization.
Collapse
Affiliation(s)
- Huaibo Zhao
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Daniele Leonori
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
22
|
Zhao H, Leonori D. Minimization of Back‐Electron Transfer Enables the Elusive sp
3
C−H Functionalization of Secondary Anilines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Daniele Leonori
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
23
|
Abadie B, Jonusauskas G, McClenaghan ND, Toullec PY, Vincent JM. Alkylation of the α-amino C-H bonds of anilines photocatalyzed by a DMEDA-Cu-benzophenone complex: reaction scope and mechanistic studies. Org Biomol Chem 2021; 19:5800-5805. [PMID: 34110351 DOI: 10.1039/d1ob00960e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu(ii) complex 1 incorporating a BP chromophore is a highly active and chemoselective photocatalyst for the alkylation of α-amino C-H bonds of anilines. The reaction was shown to proceed with a broad substrate scope in the absence of additives. Extensive mechanistic studies were performed, in particular using transient absorption spectroscopy, and spectroscopic signatures of key intermediates were identified in the conditions of catalysis. Finally, the ability of 1 to act as a multitask catalyst was showcased by conducting multi-component CuAAC and olefin hydroalkylation reactions in one-pot.
Collapse
Affiliation(s)
- Baptiste Abadie
- Institut des Sciences Moléculaires, CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, CNRS UMR 5798, Univ. Bordeaux, 33405 Talence, France
| | - Nathan D McClenaghan
- Institut des Sciences Moléculaires, CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| | - Patrick Y Toullec
- Institut des Sciences Moléculaires, CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| | - Jean-Marc Vincent
- Institut des Sciences Moléculaires, CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| |
Collapse
|