1
|
Xia W, Zhou Z, Sheng L, Chen L, Zheng F, Zhang Z, Yang Q, Ren Q, Bao Z. Deep purification of perfluorinated electronic specialty gas with a scalable metal-organic framework featuring tailored positive potential traps. Sci Bull (Beijing) 2025; 70:232-240. [PMID: 39505662 DOI: 10.1016/j.scib.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
The sequestration of trace hexafluoropropylene (C3F6) is a critical yet formidable task in the production of high-purity perfluoropropane (C3F8), an important perfluorinated electronic specialty gas (F-gas) in the advanced electronics industry. Traditional adsorbents struggle with uneven, low-pressure uptake and compromises in selectivity. This work utilizes aperture size-electrostatic potential matching within a robust metal-organic framework (Al-PMA) to facilitate selective, reversible binding of C3F6 while excluding larger C3F8 molecules. The presence of bridging hydroxyl groups (μ2-OH) in Al-PMA creates positive electrostatic potential traps that securely anchor C3F6 through strong hydrogen bonding, evidenced by in-situ infrared and 19F magic angle spinning nuclear magnetic resonance spectroscopy. Breakthrough experiments demonstrate the efficient removal of trace C3F6 from C3F8 under ambient conditions, achieving C3F8 purity exceeding 99.999%. The scalability of Al-PMA synthesis, remarkable stability, and exceptional performance highlight its potential as a promising adsorbent for industrial C3F6/C3F8 separations.
Collapse
Affiliation(s)
- Wei Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhijie Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Liangzheng Sheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China.
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China.
| |
Collapse
|
2
|
Wang Q, Hu Y, Gu Y. Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal-Organic Frameworks. NANO-MICRO LETTERS 2025; 17:118. [PMID: 39869273 PMCID: PMC11772676 DOI: 10.1007/s40820-024-01584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/01/2024] [Indexed: 01/28/2025]
Abstract
Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired. Recently, as a highly designable porous adsorbents, metal-organic frameworks (MOFs) exhibit excellent selective sorption performance toward F-gases, especially for the recognition and separation of different F-gases with highly similar properties, showing their great potential in F-gases control and recovery. In this review, we discuss the capture and separation of F-gases and their azeotropic, near-azeotropic, and isomeric mixtures in various application scenarios by MOFs, specifically classify and analyze molecular interaction between F-gases and MOFs, and interpret the mechanisms underlying their high performance regarding both adsorption capacity and selectivity, providing a repertoire for future materials design. Challenges faced in the transformation research roadmap of MOFs adsorbent separation technologies toward F-gases are also discussed, and areas for future research endeavors are highlighted.
Collapse
Affiliation(s)
- Qian Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, People's Republic of China
| | - Yifan Gu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
- Key Laboratory of Cities' Mitigation and Adaptation to Climate Change, China Meteorological Administration (CMA), Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
3
|
Wu Y, Kang J, Liao H, Chen S, Pi J, Cao J, Qing Y, Xu H, Wu Y. Synergistic engineering of P, N-codoped carbon-confined bimetallic cobalt/nickel phosphides with tailored electronic structures for boosting urea electro-oxidation. J Colloid Interface Sci 2024; 658:846-855. [PMID: 38157609 DOI: 10.1016/j.jcis.2023.12.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Bimetallic phosphides exhibit superior electrocatalytic activities and synergistic effects that make them ideal electrocatalysts for the urea oxidation reaction (UOR). Herein, P, N-codoped carbon-encapsulated cobalt/nickel phosphides derived from NiCo-MOF-74 (NiCoP@PNC) and anchored on P-doped carbonized wood fiber (PCWF) for UOR were prepared through synchronous carbonization and phosphorization. By benefiting from the synergistic effect of structural and electronic modulation, NiCoP@PNC/PCWF exhibits excellent UOR electrocatalytic performance under alkaline conditions, achieving a current density of 50 mA cm-2 with a potential of only 1.34 V (vs reversible hydrogen electrode, RHE) and continuous operation for more than 72 h. In addition, for the overall urea splitting, an electrolyzer using UOR replaced OER, which required only 1.50 V to achieve a current density of 50 mA cm-2 with excellent stability, 230 mV less than that required for the HER||OER system. In-depth theoretical analysis further proves that the strong synergistic effect between Co and Ni optimizes electronic structures, yielding excellent UOR properties. The synergistic strategy of structural and electrical modulation provides broad prospects for the design and synthesis of excellent UOR electrocatalysts for energy-saving hydrogen production by using renewable resources.
Collapse
Affiliation(s)
- Ying Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Jingfei Kang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Houde Liao
- College of Science and Technology, Wenzhou-kean University, Wenzhou, Zhejiang 325000, PR China
| | - Sha Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Jiahao Pi
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Jianjie Cao
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yan Qing
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Han Xu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| |
Collapse
|
4
|
Xia W, Yang Y, Sheng L, Zhou Z, Chen L, Zhang Z, Zhang Z, Yang Q, Ren Q, Bao Z. Temperature-dependent molecular sieving of fluorinated propane/propylene mixtures by a flexible-robust metal-organic framework. SCIENCE ADVANCES 2024; 10:eadj6473. [PMID: 38241379 PMCID: PMC10798556 DOI: 10.1126/sciadv.adj6473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
The electronics industry necessitates highly selective adsorption separation of hexafluoropropylene (C3F6) from perfluoropropane (C3F8), which poses a challenge due to their similar physiochemical properties. In this work, we present a microporous flexible-robust metal-organic framework (Ca-tcpb) with thermoregulatory gate opening, a rare phenomenon that allows tunable sieving of C3F8/C3F6. Remarkably, the temperature-dependent adsorption behavior enhances the discrimination between the larger C3F8 and the smaller C3F6, resulting in unprecedented C3F6/C3F8 selectivity (over 10,000) compared to other well-known porous materials at an optimal temperature (298 K). Dynamic breakthrough experiments demonstrate that high-purity C3F8 (over 99.999%) could be obtained from a C3F6/C3F8 (10:90) mixture under ambient conditions. The unique attributes of this material encompass exceptional adsorption selectivity, remarkable structural stability, and outstanding separation performance, positioning it as a highly promising candidate for C3F6/C3F8 separation. Single-crystal structural analysis of C3F6-loaded Ca-tcpb and theoretical calculations elucidate the host-guest interaction via multiple intermolecular interactions.
Collapse
Affiliation(s)
- Wei Xia
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Yisi Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, 350007 Fuzhou, P. R. China
| | - Liangzheng Sheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zhijie Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Lihang Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, 350007 Fuzhou, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027 Hangzhou, P. R. China
- Institute of Zhejiang University-Quzhou, 324000 Quzhou, P. R. China
| |
Collapse
|
5
|
Halder A, Bain DC, Pitt TA, Shi Z, Oktawiec J, Lee JH, Tsangari S, Ng M, Fuentes-Rivera JJ, Forse AC, Runčevski T, Muller DA, Musser AJ, Milner PJ. Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:10086-10098. [PMID: 38225948 PMCID: PMC10788154 DOI: 10.1021/acs.chemmater.3c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M2(dobdc) (M = Mg, Mn, Ni; dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M2(dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H4dobdc and Mg2(dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H2dobdc2- linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M2(dobdc) phases by heating in N,N-dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.
Collapse
Affiliation(s)
- Arjun Halder
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - David C. Bain
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Tristan A. Pitt
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Zixiao Shi
- Department of Applied Engineering Physics, Cornell University, Ithaca, NY, 14850, United States
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Stavrini Tsangari
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Marcus Ng
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - José J. Fuentes-Rivera
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Alexander C. Forse
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University, Dallas, TX, 75275, United States
| | - David A. Muller
- Department of Applied Engineering Physics, Cornell University, Ithaca, NY, 14850, United States
| | - Andrew J. Musser
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| |
Collapse
|
6
|
Azbell TJ, Pitt TA, Jerozal RT, Mandel RM, Milner PJ. Simplifying the Synthesis of Metal-Organic Frameworks. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:867-878. [PMID: 38226178 PMCID: PMC10788152 DOI: 10.1021/accountsmr.3c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes that have attracted widespread interest due to their permanent porosity and highly modular structures. However, the large volumes of organic solvents and additives, long reaction times, and specialized equipment typically required to synthesize MOFs hinder their widespread adoption in both academia and industry. Recently, our lab has developed several user-friendly methods for the gram-scale (1-100 g) preparation of MOFs. Herein, we summarize our progress in the development of high-concentration solvothermal, mechanochemical, and ionothermal syntheses of MOFs, as well as in minimizing the amount of modulators required to prepare highly crystalline Zr-MOFs. To begin, we detail our work elucidating key features of acid modulation in Zr-MOFs to improve upon current dilute solvothermal syntheses. Choosing an optimal modulator maximizes the crystallinity and porosity of Zr-MOFs while minimizing the quantity of modulator needed, reducing the waste associated with MOF synthesis. By evaluating a range of modulators, we identify the pKa, size, and structural similarity of the modulator to the linker as controlling factors in modulating ability. In the following section, we describe two high-concentration solvothermal methods for the synthesis of Zr-MOFs and demonstrate their generality among a range of frameworks. We also target the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd; dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) family of MOFs for high-concentration synthesis and introduce a two-step preparation of several variants that proceeds through a novel kinetic phase. The high-concentration methods we discuss produce MOFs on multi-gram scale with comparable properties to those prepared under traditional dilute solvothermal conditions. Next, to further curtail solvent waste and accelerate reaction times, we discuss the mechanochemical preparation of M2(dobdc) MOFs utilizing liquid amine additives in a planetary ball mill, which we also apply to the synthesis of two related salicylate frameworks. These samples exhibit comparable porosities to traditional dilute solvothermal samples but can be synthesized in just minutes, as opposed to days, and require under 1 mL of liquid additive to prepare ~0.5 g of material. In the following section, we discuss our efforts to avoid specialized equipment and eliminate solvent use entirely by employing ionothermal conditions to prepare a variety of azolate- and salicylate-based MOFs. Simply combining metal chloride (hydrate) salts with organic linkers at temperatures above the melting points of the salts affords high-quality framework materials. Further, ionothermal conditions enable the syntheses of two new Fe(III) M2(dobdc) derivatives that cannot be synthesized under normal solvothermal conditions. Last, as a demonstrative example, we discuss our efforts to synthesize 100 g of high-quality Mg2(dobdc) in a single batch using a high-concentration (1.0 M) hydrothermal synthesis. Our Account will be of significant interest to researchers aiming to prepare gram-scale quantities of MOFs for further study.
Collapse
Affiliation(s)
- Tyler J Azbell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Tristan A Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Ronald T Jerozal
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Ruth M Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| |
Collapse
|
7
|
Keasler KT, Zick ME, Stacy EE, Kim J, Lee JH, Aeindartehran L, Runčevski T, Milner PJ. Handling fluorinated gases as solid reagents using metal-organic frameworks. Science 2023; 381:1455-1461. [PMID: 37769097 PMCID: PMC10799685 DOI: 10.1126/science.adg8835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023]
Abstract
Fluorine is an increasingly common substituent in pharmaceuticals and agrochemicals because it improves the bioavailability and metabolic stability of organic molecules. Fluorinated gases represent intuitive building blocks for the late-stage installation of fluorinated groups, but they are generally overlooked because they require the use of specialized equipment. We report a general strategy for handling fluorinated gases as benchtop-stable solid reagents using metal-organic frameworks (MOFs). Gas-MOF reagents are prepared on gram-scale and used to facilitate fluorovinylation and fluoroalkylation reactions. Encapsulation of gas-MOF reagents within wax enables stable storage on the benchtop and controlled release into solution upon sonication, which represents a safer alternative to handling the gas directly. Furthermore, our approach enables high-throughput reaction development with these gases.
Collapse
Affiliation(s)
- Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York 14850, United States
| | - Mary E. Zick
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York 14850, United States
| | - Emily E. Stacy
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York 14850, United States
| | - Jaehwan Kim
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York 14850, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST); Seoul 02792, Republic of Korea
| | - Lida Aeindartehran
- Department of Chemistry, Southern Methodist University; Dallas, Texas 75275, United States
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University; Dallas, Texas 75275, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University; Ithaca, New York 14850, United States
| |
Collapse
|
8
|
Dong A, Chen D, Li Q, Qian J. Metal-Organic Frameworks for Greenhouse Gas Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201550. [PMID: 36563116 DOI: 10.1002/smll.202201550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Using petrol to supply energy for a car or burning coal to heat a building generates plenty of greenhouse gas (GHG) emissions, including carbon dioxide (CO2 ), water vapor (H2 O), methane (CH4 ), nitrous oxide (N2 O), ozone (O3 ), fluorinated gases. These up-and-coming metal-organic frameworks (MOFs) are structurally endowed with rigid inorganic nodes and versatile organic linkers, which have been extensively used in the GHG-related applications to improve the lives and protect the environment. Porous MOF materials and their derivatives have been demonstrated to be competitive and promising candidates for GHG separation, storage and conversions as they shows facile preparation, large porosity, adjustable nanostructure, abundant topology, and tunable physicochemical property. Enormous progress has been made in GHG storage and separation intrinsically stemmed from the different interaction between guest molecule and host framework from MOF itself in the recent five years. Meanwhile, the use of porous MOF materials to transform GHG and the influence of external conditions on the adsorption performance of MOFs for GHG are also enclosed. In this review, it is also highlighted that the existing challenges and future directions are discussed and envisioned in the rational design, facile synthesis and comprehensive utilization of MOFs and their derivatives for practical applications.
Collapse
Affiliation(s)
- Anrui Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Qipeng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657099, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
9
|
Chen EY, Mandel RM, Milner PJ. Evaluating Solvothermal and Mechanochemical Routes towards the Metal-Organic Framework Mg 2( m-dobdc). CrystEngComm 2022; 24:7292-7297. [PMID: 36776537 PMCID: PMC9910849 DOI: 10.1039/d2ce00739h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks bearing coordinatively unsaturated Mg(II) sites are promising materials for gas storage, chemical separations, and drug delivery due to their low molecular weights and lack of toxicity. However, there remains a limited number of such MOFs reported in the literature. Herein, we investigate the gas sorption properties of the understudied framework Mg2(m-dobdc) (dobdc4- = 4,6-dioxido-1,3-benzenedicarboxylate) synthesized under both solvothermal and mechanochemical conditions. Both materials are found to be permanently porous, as confirmed by 77 K N2 adsorption measurements. In particular, Mg2(m-dobdc) synthesized under mechanochemical conditions using exogenous organic base displays one of the highest capacities reported to date (6.14 mmol/g) for CO2 capture in a porous solid under simulated coal flue gas conditions (150 mbar, 40 °C). As such, mechanochemically synthesized Mg2(m-dobdc) represents a promising new framework for applications requiring high gas adsorption capacities in a porous solid.
Collapse
Affiliation(s)
- Elena Y. Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States
| |
Collapse
|
10
|
Dumon AS, Rzepa HS, Alamillo-Ferrer C, Bures J, Procter R, Sheppard TD, Whiting A. A computational tool to accurately and quickly predict 19F NMR chemical shifts of molecules with fluorine-carbon and fluorine-boron bonds. Phys Chem Chem Phys 2022; 24:20409-20425. [PMID: 35983846 DOI: 10.1039/d2cp02317b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the evaluation of density-functional-theory (DFT) based procedures for predicting 19F NMR chemical shifts at modest computational cost for a range of molecules with fluorine bonds, to be used as a tool for assisting the characterisation of reaction intermediates and products and as an aid to identifying mechanistic pathways. The results for a balanced learning set of molecules were then checked using two further testing sets, resulting in the recommendation of the ωB97XD/aug-cc-pvdz DFT method and basis set as having the best combination of accuracy and computational time, with a RMS error of 3.57 ppm. Cationic molecules calculated without counter-anion showed normal errors, whilst anionic molecules showed somewhat larger errors. The method was applied to the prediction of the conformationally averaged 19F chemical shifts of 2,2,3,3,4,4,5,5-octafluoropentan-1-ol, in which gauche stereoelectronic effects involving fluorine dominate and to determining the position of coordination equilibria of fluorinated boranes as an aid to verifying the relative energies of intermediate species involved in catalytic amidation reactions involving boron catalysts.
Collapse
Affiliation(s)
- Alexandre S Dumon
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 OBZ, UK.
| | - Henry S Rzepa
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 OBZ, UK.
| | | | - Jordi Bures
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Richard Procter
- Department of Chemistry, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Tom D Sheppard
- Department of Chemistry, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Andrew Whiting
- Centre for Sustainable Chemical Processes, Department of Chemistry, Science Laboratories, Durham University, South Road, Durham, DH1 3LE, UK
| |
Collapse
|
11
|
Ahmad IAH, Losacco GL, Shchurik V, Wang X, Cohen RD, Herron AN, Aiken S, Fiorito D, Wang H, Reibarkh M, Nowak T, Makarov AA, Stoll DR, Guillarme D, Mangion I, Aggarwal VK, Yu JQ, Regalado EL. Trapping-Enrichment Multi-dimensional Liquid Chromatography with On-Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angew Chem Int Ed Engl 2022; 61:e202117655. [PMID: 35139257 DOI: 10.1002/anie.202117655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/10/2022]
Abstract
At the forefront of chemistry and biology research, development timelines are fast-paced and large quantities of pure targets are rarely available. Herein, we introduce a new framework, which is built upon an automated, online trapping-enrichment multi-dimensional liquid chromatography platform (TE-Dt-mDLC) that enables: 1) highly efficient separation of complex mixtures in a first dimension (1 D-UV); 2) automated peak trapping-enrichment and buffer removal achieved through a sequence of H2 O and D2 O washes using an independent pump setup; and 3) a second dimension separation (2 D-UV-MS) with fully deuterated mobile phases and fraction collection to minimize protic residues for immediate NMR analysis while bypassing tedious drying processes and minimizing analyte degradation. Diverse examples of target isolation and characterization from organic synthesis and natural product chemistry laboratories are illustrated, demonstrating recoveries above 90 % using as little as a few micrograms of material.
Collapse
Affiliation(s)
- Imad A Haidar Ahmad
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | - Vladimir Shchurik
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Xiao Wang
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Ryan D Cohen
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sheenagh Aiken
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Daniele Fiorito
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Heather Wang
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Mikhail Reibarkh
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Timothy Nowak
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Alexey A Makarov
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Dwight R Stoll
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Ian Mangion
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik L Regalado
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
12
|
Ahmad IAH, Losacco GL, Shchurik V, Wang X, Cohen RD, Herron AN, Aiken S, Fiorito D, Wang H, Reibarkh M, Nowak T, Makarov AA, Stoll DR, Guillarme D, Mangion I, Aggarwal VK, Yu J, Regalado EL. Trapping‐Enrichment Multi‐dimensional Liquid Chromatography with On‐Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Vladimir Shchurik
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Xiao Wang
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Ryan D. Cohen
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Alastair N. Herron
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Sheenagh Aiken
- School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Daniele Fiorito
- School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Heather Wang
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Mikhail Reibarkh
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Timothy Nowak
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Alexey A. Makarov
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Dwight R. Stoll
- Department of Chemistry Gustavus Adolphus College Saint Peter MN 56082 USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences University of Geneva, CMU Rue Michel-Servet 1 1211 Geneva 4 Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva, CMU Rue Michel-Servet 1 1211 Geneva 4 Switzerland
| | - Ian Mangion
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | | | - Jin‐Quan Yu
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Erik L. Regalado
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| |
Collapse
|