1
|
Li Z, Tao M, Wu Y, Wei W, Hu X, Wang T, Wang Z, Dai Z. Proteolysis-regulated excited state electron transfer of Ag 2S/In(OH) 3@BSA nanocomposites for fluorescence-photoelectrochemistry dual-mode biosensing of heparin. Biosens Bioelectron 2025; 270:116924. [PMID: 39591922 DOI: 10.1016/j.bios.2024.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
Sharing the same photoexcitation process, fluorescence (FL) and photoelectrochemistry (PEC) accomplish optical-optical and optical-electrochemical switches respectively, and are both widely used in diverse fields. However, since FL and PEC are mutually exclusive in principle, it is difficult to obtain intense FL and PEC responses in a system, limiting FL-PEC dual-mode applications. In this study, Ag2S quantum dots (QDs) and In(OH)3 nanoblocks (NBs) are simultaneously synthesized by BSA-templated bio-mineralization, and the excited state electrons of Ag2S/In(OH)3@BSA nanocomposites (NCs) are further regulated by a proteolysis process. Owing to the coating of BSA, excited state electrons primarily return to ground state via radiation transition, resulting in a robust FL signal. When BSA is hydrolyzed by trypsin, the excited state electrons preferentially transfer to the electron acceptors, and the exposed Ag2S/In(OH)3@BSA NCs generate a strong PEC signal. Consequently, heparin, acting as an inhibitor of trypsin, can regulate the FL-PEC switch, allowing for the quantification of heparin by both the decrease in FL signals and the increase in PEC signals. Therefore, a dual-mode biosensor is established to detect heparin using FL and PEC signals, with linear ranges of 0.75-750 U mL-1 and 3.75 × 10-3 to 37.5 U mL-1, and limits of detection of 0.68 U mL-1 and 4.97 × 10-4 U mL-1, respectively. Additionally, the biosensor is used to monitor the rapid metabolism of heparin within 20 h in rats. Overall, this work demonstrates that manipulating excited state electrons of nanomaterials through a biological process offers an alternative perspective for designing FL-PEC dual-mode sensing systems.
Collapse
Affiliation(s)
- Zijun Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Min Tao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yue Wu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Wanting Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xixi Hu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianyou Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China; School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
2
|
Huang X, Feng J, Hu S, Xu B, Hao M, Liu X, Wen Y, Su D, Ji Y, Li Y, Li Y, Huang Y, Chan TS, Hu Z, Tian N, Shao Q, Huang X. Regioselective epitaxial growth of metallic heterostructures. NATURE NANOTECHNOLOGY 2024; 19:1306-1315. [PMID: 38918614 DOI: 10.1038/s41565-024-01696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/15/2024] [Indexed: 06/27/2024]
Abstract
Constructing regioselective architectures in heterostructures is important for many applications; however, the targeted design of regioselective architectures is challenging due to the sophisticated processes, impurity pollution and an unclear growth mechanism. Here we successfully realized a one-pot kinetically controlled synthetic framework for constructing regioselective architectures in metallic heterostructures. The key objective was to simultaneously consider the reduction rates of metal precursors and the lattice matching relationship at heterogeneous interfaces. More importantly, this synthetic method also provided phase- and morphology-independent behaviours as foundations for choosing substrate materials, including phase regulation from Pd20Sb7 hexagonal nanoplates (HPs) to Pd8Sb3 HPs, and morphology regulation from Pd20Sb7 HPs to Pd20Sb7 rhombohedra and Pd20Sb7 nanoparticles. Consequently, the activity of regioselective epitaxially grown Pt on Pd20Sb7 HPs was greatly enhanced towards the ethanol oxidation reaction; its activity was 57 times greater than that of commercial Pt/C, and the catalyst showed increased stability (decreasing by 16.3% after 2,000 cycles) and selectivity (72.4%) compared with those of commercial Pt/C (56.0%, 18.2%). This work paves the way for the design of unconventional well-defined heterostructures for use in various applications.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Jie Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Shengnan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bingyan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Mingsheng Hao
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yan Wen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, China
| | - Yinshi Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Huang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Na Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China.
| |
Collapse
|
3
|
Martínez-Carreón MJ, Solís-Pomar F, Fundora A, Gutiérrez-Lazos CD, Mejía-Rosales S, Fernández-Escamilla HN, Guerrero-Sánchez J, Meléndrez MF, Pérez-Tijerina E. Synthesis of silver-palladium Janus nanoparticles using co-sputtering of independent sources: experimental and theorical study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:808-816. [PMID: 38979525 PMCID: PMC11228614 DOI: 10.3762/bjnano.15.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
Janus-type nanoparticles are important because of their ability to combine distinct properties and functionalities in a single particle, making them extremely versatile and valuable in various scientific, technological, and industrial applications. In this work, bimetallic silver-palladium Janus nanoparticles were obtained for the first time using the inert gas condensation technique. In order to achieve this, an original synthesis equipment built by Mantis Ltd. was modified by the inclusion of an additional magnetron in a second chamber, which allowed us to use two monometallic targets to sputter the two metals independently. With this arrangement, we could find appropriate settings at room temperature to promote the synthesis of bimetallic Janus nanoparticles. The structural properties of the resulting nanoparticles were investigated by transmission electron microscopy (TEM), and the chemical composition was analyzed by TEM energy dispersive spectroscopy (TEM-EDS), which, together with structural analysis, confirmed the presence of Janus-type nanostructures. Results of molecular dynamics and TEM simulations show that the differences between the crystalline structures of the Pd and Ag regions observed in the TEM micrographs can be explained by small mismatches in the orientations of the two regions of the particle. A density functional theory structural aims to understand the atomic arrangement at the interface of the Janus particle.
Collapse
Affiliation(s)
- Maria J Martínez-Carreón
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Francisco Solís-Pomar
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Abel Fundora
- Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC). Universidad de La Habana, San Lázaro y L, Vedado La Habana, 10400, Cuba
| | - Claudio D Gutiérrez-Lazos
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Sergio Mejía-Rosales
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Hector N Fernández-Escamilla
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Jonathan Guerrero-Sánchez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California, 22800, Mexico
| | - Manuel F Meléndrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1457, Concepción 4060000, Chile
| | - Eduardo Pérez-Tijerina
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| |
Collapse
|
4
|
Chen N, Wang Y, Song X, Li Y, Deng Z. Steering DNA Condensation on Engineered Nanointerfaces. NANO LETTERS 2022; 22:8550-8558. [PMID: 36315179 DOI: 10.1021/acs.nanolett.2c03051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA has received increasing attention in nanotechnology due to its ability to fold into prescribed structures. Different from the commonly adopted base-pairing strategy, an emerging class of amorphous DNA materials are formed by DNA's abiological interactions. Despite the great successes, a lack of nanoscale nucleation/growth control disables more advanced considerations. This work aims at harnessing the heterogeneous nucleation of metal-ion-glued DNA condensates on nanointerfaces. Upon unveiling key orthogonal factors including solution pH, ionic cross-linkers, and surface functionalities, chemically programmable DNA condensation on nanoparticle seeds is achieved, resembling a famous Stöber process for silica coating. The nucleation rules discovered on individual nanoseeds can be passed on to their dimeric assemblies, where broken spherical symmetry and the existence of interparticle gaps help a regiospecific DNA gelation. The steerable DNA condensation, and the multifunctions from DNA, metal ions, and nanocores, hold a great promise in noncanonical DNA nanotechnology toward novel applications.
Collapse
Affiliation(s)
- Nuo Chen
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueliang Wang
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Song
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanjuan Li
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|