1
|
Chen C, Xu H, Zhu S. Polarity-Reversed Functionalization of Aliphatic Aldehydes via Divergent Nickel Hydride Catalysis. Angew Chem Int Ed Engl 2025; 64:e202419965. [PMID: 39665868 DOI: 10.1002/anie.202419965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
Divergent catalysis represents an exciting frontier for unlocking molecular structural diversity and exploring new activation modes. Here, we report the unexpected discovery of polarity-reversed divergent activation and functionalization of aliphatic aldehydes, where enolizable aliphatic aldehydes are selectively activated by nickel hydride to form two distinct alkylnickel intermediates divergently. This mild and operationally simple process enables the transformation of a wide variety of readily available aliphatic aldehydes, along with alkyl or aryl electrophiles, into the corresponding secondary alcohols or more challenging deoxygenated alkanes with excellent chemoselectivity.
Collapse
Affiliation(s)
- Changpeng Chen
- State Key Laboratory of Coordination Chemistry, Engineering Research Center of Photoresist Materials, Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
| | - Hanhong Xu
- State Key Laboratory of Coordination Chemistry, Engineering Research Center of Photoresist Materials, Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Engineering Research Center of Photoresist Materials, Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
2
|
Zi QX, Shu W. Asymmetric Synthesis of Dialkyl Carbinols by Ni-Catalyzed Reductive-Oxidative Relay of Distinct Alkenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409592. [PMID: 39467112 DOI: 10.1002/advs.202409592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Enantioenriched unsymmetric dialkyl carbinol derivatives are of importance in natural products, bioactive molecules, and functional organic materials. However, the catalytic asymmetric synthesis of dialkyl carbinol derivatives remains challenging due to the similar steric and electronic properties of two alkyl substituents. Herein, an unprecedented synthesis of chiral dialkyl carbinol ester derivatives from Ni-catalyzed reductive-oxidative relay cross-coupling of two alkenes is developed for the first time. The reaction features the use of enol esters and unactivated alkenes as two different alkyl equivalents to undergo head-to-tail and enantioselective alkyl-alkyl cross-coupling. The reaction undergoes two-electron reduction and single electron oxidation in the presence of both reductants and oxidants. The use of an allyl bromide as single electron acceptor is crucial for the success of this non-trivial asymmetric cross-coupling, providing a new reaction mode for asymmetric alkyl-alkyl bond-forming event in the absence of stoichiometric alkyl electrophiles.
Collapse
Affiliation(s)
- Quan-Xing Zi
- Guangming Advanced Research Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology, Shenzhen Grubbs Institute, Shenzhen, Guangdong, 518055, P. R. China
| | - Wei Shu
- Guangming Advanced Research Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology, Shenzhen Grubbs Institute, Shenzhen, Guangdong, 518055, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| |
Collapse
|
3
|
Wang JW, Zhu QW, Liu D, Chen PW, Chen HZ, Lu X, Fu Y. Nickel-Catalyzed α-selective Hydroalkylation of Vinylarenes. Angew Chem Int Ed Engl 2024; 63:e202413074. [PMID: 39133520 DOI: 10.1002/anie.202413074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
C(sp3) centers adjacent to (hetero) aryl groups are widely present in physiologically active molecules. Metal-hydride-catalyzed hydroalkylation of alkenes represents an efficient means of forging C(sp3)-C(sp3) bonds, boasting advantages as a wide source of substrates, mild reaction conditions, and facile selectivity manipulation. Nevertheless, the hydroalkylation of vinylarenes encounters constraints in terms of substrate scope, necessitating the employment of activated alkyl halides or alkenes containing chelating groups, remains a challenge. In this context, we report a general nickel-hydride-catalyzed hydroalkylation protocol for vinylarenes. Remarkably, this system enables α-selective hydroalkylation of both aryl and heteroaryl alkenes under an extra ligand-free condition, demonstrating excellent coupling efficiency and selectivity. Furthermore, through the incorporation of chiral bisoxazoline ligands, we have achieved regio- and enantioselective hydroalkylation of vinylpyrroles, thereby facilitating the synthesis of α-branched alkylated pyrrole derivatives.
Collapse
Affiliation(s)
- Jia-Wang Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Qing-Wei Zhu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Deguang Liu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Pei-Wen Chen
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong-Zhong Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xi Lu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yao Fu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Yang L, Lalic G. Regio- and Diastereoselective Synthesis of Trisubstituted Alkenes Through Hydroalkylation of Alkynyl Boronamides. Angew Chem Int Ed Engl 2024; 63:e202409429. [PMID: 38972849 DOI: 10.1002/anie.202409429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Hydroalkylation of alkynes is a powerful method for alkene synthesis. However, regioselectivity has been difficult to achieve in transformations of internal alkynes hindering applications in the synthesis of trisubstituted alkenes. To overcome these limitations, we explored using boryl groups as versatile directing groups that can control the regioselectivity of the hydroalkylation and subsequently be replaced in a cross-coupling reaction. The result of our exploration is a nickel-catalyzed hydroalkylation of alkynyl boronamides that provides access to a wide range of trisubstituted alkenes with high regio- and diastereoselectivity. The reaction can be accomplished with a variety of coupling partners, including primary and secondary alkyl iodides, α-bromo esters, α-chloro phthalimides, and α-chloro boronic esters. Preliminary studies of the reaction mechanism provide evidence for the hydrometalation mechanism and the formation of alkyl radical intermediates.
Collapse
Affiliation(s)
- Langxuan Yang
- Department of Chemistry, University of Washington, 109 Bagley Hall, Seattle, WA 98195, USA
| | - Gojko Lalic
- Department of Chemistry, University of Washington, 109 Bagley Hall, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Zhang J, Jiao M, Lu Z, Lu H, Wang M, Shi Z. Hydrodeuteroalkylation of Unactivated Olefins Using Thianthrenium Salts. Angew Chem Int Ed Engl 2024; 63:e202409862. [PMID: 38866703 DOI: 10.1002/anie.202409862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Isotopically labeled alkanes play a crucial role in organic and pharmaceutical chemistry. While some deuterated methylating agents are readily available, the limited accessibility of other deuteroalkyl reagents has hindered the synthesis of corresponding products. In this study, we introduce a nickel-catalyzed system that facilitates the synthesis of various deuterium-labeled alkanes through the hydrodeuteroalkylation of d2-labeled alkyl TT salts with unactivated alkenes. Diverging from traditional deuterated alkyl reagents, alkyl thianthrenium (TT) salts can effectively and selectively introduce deuterium at α position of alkyl chains using D2O as the deuterium source via a single-step pH-dependent hydrogen isotope exchange (HIE). Our method allows for high deuterium incorporation, and offers precise control over the site of deuterium insertion within an alkyl chain. This technique proves to be invaluable for the synthesis of various deuterium-labeled compounds, especially those of pharmaceutical relevance.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mengjie Jiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zheng Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Jiangsu Nata Opto-electronic Material Co., Ltd., Suzhou, 215126, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
6
|
Dhawa U, Lavrencic L, Hu X. Nickel-Catalyzed Enantio- and Diastereoselective Synthesis of Fluorine-Containing Vicinal Stereogenic Centers. ACS CENTRAL SCIENCE 2024; 10:1657-1666. [PMID: 39220696 PMCID: PMC11363326 DOI: 10.1021/acscentsci.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The construction of fluorinated architectures has been a topic of interest to medicinal chemists due to their unique ability to improve the pharmacokinetic properties of bioactive compounds. However, the stereoselective synthesis of fluoro-organic compounds with vicinal stereogenic centers is a challenge. Herein, we present a directing-groupfree nickel-hydride catalyzed hydroalkylation of fluoroalkenes to afford fluorinated motifs with two adjacent chiral centers in excellent yields and stereoselectivities. Our method provides expedient access to biologically relevant, highly enantioenriched organofluorine compounds. Furthermore, the strategy can be used for the diastereo- and enantioselective synthesis of vicinal difluorides, which have recently gained attention in the fields of organocatalysis and peptide mimics.
Collapse
Affiliation(s)
| | | | - Xile Hu
- Laboratory of Inorganic Synthesis
and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), ISIC-LSCI, Lausanne 1015, Switzerland
| |
Collapse
|
7
|
Smith MA, Kang RJD, Kumar R, Roy B, Gaunt MJ. Modular synthesis of α-branched secondary alkylamines via visible-light-mediated carbonyl alkylative amination. Chem Sci 2024:d4sc03916e. [PMID: 39184289 PMCID: PMC11342158 DOI: 10.1039/d4sc03916e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
The development of methods for the assembly of secondary α-alkyl amines remains a central challenge to chemical synthesis because of their critical importance in modulating the physical properties of biologically active molecules. Despite decades of intensive research, chemists still rely on selective N-alkylation and carbonyl reductive amination to make most amine products. Here we report the further evolution of a carbonyl alkylative amination process that, for the first time, brings together primary amines, aldehydes and alkyl iodides in a visible-light-mediated multicomponent coupling reaction for the synthesis of a wide range of α-branched secondary alkylamines. In addition to exploring the tolerance and limitations in each reaction component, we also report preliminary applications to the telescoped synthesis of α-branched N-heterocycles and an N-alkylation protocol that is selective for primary over cyclic secondary amines. Our data support a mechanism involving addition of an alkyl radical to an uncharged alkyl imine which, to the best of our knowledge, has not previously been described. We believe that this method will enable practitioners of synthetic chemistry in academic and industrial settings to approach the synthesis of these important molecules in a manner that is streamlined compared to established approaches.
Collapse
Affiliation(s)
- Milo A Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Ryan J D Kang
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Roopender Kumar
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Biswarup Roy
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
8
|
Wu X, Li S, Chen L, Ma S, Ma B, Song L, Qian D. Stereoselective Construction of Multifunctional C-Glycosides Enabled by Nickel-Catalyzed Tandem Borylation/Glycosylation. J Am Chem Soc 2024; 146:22413-22423. [PMID: 39096292 DOI: 10.1021/jacs.4c05485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Stereochemically pure saccharides have indispensable roles in fields ranging from medicinal chemistry to materials science and organic synthesis. However, the development of a simple, stereoselective, and efficient glycosylation protocol to access α- and β-C-glycosides (particularly 2-deoxy entities) remains a persistent challenge. Existing studies have primarily focused on C1 modification of carbohydrates and transformation of glycosyl radical precursors. Here, we innovate by harnessing the in situ generated glycosyl-Ni species to achieve one-pot borylation and glycosylation in a cascade manner, which is enabled by an earth-abundant nickel-catalyzed carboboration of readily accessible glycals without any ligand. This work reveals the potential for the development of a modular and multifunctional glycosylation platform to facilitate the simultaneous introduction of C-C and C-B bonds at the stereogenic center of saccharides, a largely unexploited research area. Preliminary experimental and computational studies indicate that the endocyclic O and the C3 group play important roles in stereoseclectively forging glycosidic bonds. As a result, a diverse range of C-R (R = alkyl, aryl, and alkenyl) and 2-deoxygenated glycosides bearing modifiable boron groups could be rapidly made with excellent stereocontrol and exhibit remarkable functional group tolerance. The synthetic potential is underscored in the late-stage glycosylation of natural products and commercial drugs as well as the facile preparation of various rare sugars, bioactive conjugates, and key intermediates to prorocentin, phomonol, and aspergillide A.
Collapse
Affiliation(s)
- Xiaomei Wu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Kowloon, 999077 Hong Kong SAR, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Liqin Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Siwei Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Bin Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Deyun Qian
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
- School of Chemical Science and Technology, Yunnan University, Kunming 650500, China
| |
Collapse
|
9
|
Huang J, Yan X, Liu X, Chen Z, Jiang T, Zhang L, Ju G, Huang G, Wang C. Enantioselective Ni-Catalyzed 1,2-Borylalkynylation of Unactivated Alkenes. J Am Chem Soc 2024; 146:17140-17149. [PMID: 38864776 DOI: 10.1021/jacs.4c03022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Enantioselective three-component difunctionalization of alkenes with boron reagents represents an attractive strategy for assembling three-dimensional chiral organoboron compounds. However, regio- and enantiocontrol comprise the pivot challenges in these transformations, which predominantly require the use of activated conjugated alkenes. Herein, by utilizing various carbonyl directing groups, including amides, sulfinamides, ketones, and esters, we succeed in realizing a nickel-catalyzed 1,2-borylalkynylation of unactivated alkenes to enable the simultaneous incorporation of a boron entity and an sp-fragment across the double bond. The products contain boryl, alkynyl, and carbonyl functional groups with orthogonal synthetic reactivities, offering three handles for further derivatization to access valuable intermediates. The utility of this ligand-enabled asymmetric protocol has been highlighted through the late-stage decoration of drug-relevant molecules.
Collapse
Affiliation(s)
- Jie Huang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xueyuan Yan
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xuanyu Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Zhengyang Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Tao Jiang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Lanlan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Guodong Ju
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Chao Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
10
|
Shen M, Niu C, Wang X, Huang JB, Zhao Z, Ni SF, Rong ZQ. Regio- and Enantioselective Hydromethylation of 3-Pyrrolines and Glycals Enabled by Cobalt Catalysis. JACS AU 2024; 4:2312-2322. [PMID: 38938800 PMCID: PMC11200246 DOI: 10.1021/jacsau.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Enantioenriched 3-methylpyrrolidine, with its unique chiral nitrogen-containing core skeleton, exists widely in various functional molecules, including natural products, bioactive compounds, and pharmaceuticals. Traditional methods for synthesizing these valuable methyl-substituted heterocycles often involve enzymatic processes or complex procedures with chiral auxiliaries, limiting the substrate scope and efficiency. Efficient catalytic methylation, especially in an enantioselective manner, has been a long-standing challenge in chemical synthesis. Herein, we present a novel approach for the remote and stereoselective installation of a methyl group onto N-heterocycles, leveraging a CoH-catalyzed asymmetric hydromethylation strategy. By effectively combining a commercial cobalt precursor with a modified bisoxazoline (BOX) ligand, a variety of easily accessible 3-pyrrolines can be converted to valuable enantiopure 3-(isotopic labeling)methylpyrrolidine compounds with outstanding enantioselectivity. This efficient protocol streamlines the two-step synthesis of enantioenriched 3-methylpyrrolidine, which previously required up to five or six steps under harsh conditions or expensive starting materials.
Collapse
Affiliation(s)
- Mengyang Shen
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Caoyue Niu
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Xuchao Wang
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Jia-Bo Huang
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Zhen Zhao
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shao-Fei Ni
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Zi-Qiang Rong
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
11
|
Zhao L, Liu F, Zhuang Y, Shen M, Xue J, Wang X, Zhang Y, Rong ZQ. CoH-catalyzed asymmetric remote hydroalkylation of heterocyclic alkenes: a rapid approach to chiral five-membered S- and O-heterocycles. Chem Sci 2024; 15:8888-8895. [PMID: 38873055 PMCID: PMC11168172 DOI: 10.1039/d4sc01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Saturated heterocycles, which incorporate S and O heteroatoms, serve as fundamental frameworks in a diverse array of natural products, bioactive compounds, and pharmaceuticals. Herein, we describe a unique cobalt-catalyzed approach integrated with a desymmetrization strategy, facilitating precise and enantioselective remote hydroalkylation of unactivated heterocyclic alkenes. This method delivers hydroalkylation products with high yields and excellent stereoselectivity, representing good efficiency in constructing alkyl chiral centers at remote C3-positions within five-membered S/O-heterocycles. Notably, the broad scope and good functional group tolerance of this asymmetric C(sp3)-C(sp3) coupling enhance its applicability.
Collapse
Affiliation(s)
- Lingzi Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yan Zhuang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Mengyang Shen
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Jing Xue
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yuting Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
12
|
Lu HX, Wang C, Gao TT, Lin EZ, Lu SL, Hong X, Li BJ. Rhodium-Catalyzed Highly Enantioselective Hydroboration of Acyclic Tetrasubstituted Alkenes Directed by an Amide. J Am Chem Soc 2024; 146:16194-16202. [PMID: 38832699 DOI: 10.1021/jacs.4c04108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Although progress has been made in enantioselective hydroboration of di- and trisubstituted alkenes over the past decades, enantioselective hydroboration of tetrasubstituted alkenes with high diastereo- and enantioselectivities continues as an unmet challenge since the 1950s due to its extremely low reactivity and the difficulties to simultaneously control the regio- and stereoselectivity of a tetrasubstituted alkene. Here, we report highly regio-, diastereo-, and enantioselective catalytic hydroboration of diverse acyclic tetrasubstituted alkenes. The delicate interplay of an electron-rich rhodium complex and coordination-assistance forms a highly adaptive catalyst that effectively overcomes the low reactivity and controls the stereoselectivity. The generality of the catalyst system is exemplified by its efficacy across various tetrasubstituted alkenes with diverse steric and electronic properties.
Collapse
Affiliation(s)
- Hou-Xiang Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Tao-Tao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shou-Lin Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Lu L, Chen S, Kong W, Gao B, Li Y, Zhu L, Yin G. Enantioselective Synthesis of β-Aminoboronic Acids via Borylalkylation of Enamides. J Am Chem Soc 2024. [PMID: 38853359 DOI: 10.1021/jacs.4c03700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Aminoboronic acids represent a class of significant compounds that have attracted significant attention in the fields of drug discovery and organic synthesis. Despite notable progress in their synthesis, the efficient construction of chiral β-aminoboronic acids with alkyl side chains remains a challenging endeavor. Here, we introduce an unprecedented nickel-catalyzed asymmetric borylalkylation of enamides, employing a simple chiral diamine ligand, readily available B2pin2, and alkyl halides as coupling partners. This reaction serves as an efficient platform for assembling a diverse range of β-aminoboronic acid derivatives with flexible alkyl side chains, displaying exceptional regio-, stereo-, and enantioselectivities. Moreover, this transformation exhibits a broad substrate scope and remarkable tolerance toward various functional groups. Theoretical calculations demonstrate that the benzyl group on the ligand is the key to the high enantiocontrol in this transformation. Additionally, we exemplify the practical application of this strategy through the concise synthesis of complex bioactive molecules.
Collapse
Affiliation(s)
- Liguo Lu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Shuhan Chen
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Wuhan, Hubei 430072, P. R. China
| | - Weiyu Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Ben Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Lei Zhu
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Wuhan, Hubei 430072, P. R. China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
14
|
Ren J, Sun Z, Zhao S, Huang J, Wang Y, Zhang C, Huang J, Zhang C, Zhang R, Zhang Z, Ji X, Shao Z. Enantioselective synthesis of chiral α,α-dialkyl indoles and related azoles by cobalt-catalyzed hydroalkylation and regioselectivity switch. Nat Commun 2024; 15:3783. [PMID: 38710722 DOI: 10.1038/s41467-024-48175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
General, catalytic and enantioselective construction of chiral α,α-dialkyl indoles represents an important yet challenging objective to be developed. Herein we describe a cobalt catalyzed enantioselective anti-Markovnikov alkene hydroalkylation via the remote stereocontrol for the synthesis of α,α-dialkyl indoles and other N-heterocycles. This asymmetric C(sp3)-C(sp3) coupling features high flexibility in introducing a diverse set of alkyl groups at the α-position of chiral N-heterocycles. The utility of this methodology has been demonstrated by late-stage functionalization of drug molecules, asymmetric synthesis of bioactive molecules, natural products and functional materials, and identification of a class of molecules exhibiting anti-apoptosis activities in UVB-irradiated HaCaT cells. Ligands play a vital role in controlling the reaction regioselectivity. Changing the ligand from bi-dentate L6 to tridentate L12 enables CoH-catalyzed Markovnikov hydroalkylation. Mechanistic studies disclose that the anti-Markovnikov hydroalkylation involves a migratory insertion process while the Markovnikov hydroalkylation involves a MHAT process.
Collapse
Affiliation(s)
- Jiangtao Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- Southwest United Graduate School, 650092, Kunming, China
| | - Zheng Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Shuang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinyuan Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Yukun Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Cheng Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinhai Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Chenhao Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Ruipu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 430079, Wuhan, China.
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- School of Pharmacy, Yunnan University, 650500, Kunming, China.
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- Southwest United Graduate School, 650092, Kunming, China.
| |
Collapse
|
15
|
Khan S, Zhang J, Khan A. Molybdenum-Catalyzed Regio- and Enantioselective Amination of Allylic Carbonates: Total Synthesis of ( S)-Clopidogrel. Org Lett 2024; 26:2758-2762. [PMID: 37515783 DOI: 10.1021/acs.orglett.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
The first molybdenum-catalyzed highly regio- and enantioselective allylic amination of both aryl- and alkyl-substituted branched allylic carbonates has been developed. A wide variety of amines, including drugs and complex bioactive molecules, underwent successful amination with excellent reaction outcomes (up to 96% yield, >99% ee, and >20:1 b/l). The reaction could be scaled up and has been applied to the total synthesis of chiral drug molecule (S)-clopidogrel (Plavix).
Collapse
Affiliation(s)
- Shahid Khan
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
16
|
Zhou J, He Y, Liu Z, Wang Y, Zhu S. Ligand Relay Catalysis Enables Asymmetric Migratory Hydroarylation for the Concise Synthesis of Chiral α-(Hetero)Aryl-Substituted Amines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306447. [PMID: 38419384 DOI: 10.1002/advs.202306447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/19/2023] [Indexed: 03/02/2024]
Abstract
Complementary to the design of a single structurally complex chiral ligand to promote each step in transition-metal catalysis, multiligand relay catalysis through dynamic ligand exchange with each step in the catalytic cycle promoted by its best ligand provides an attractive approach to enhance the whole reaction reactivity and selectivity. Herein, a regio- and enantioselective NiH-catalyzed migratory hydroarylation process with a simple combination of a chain-walking ligand and an asymmetric arylation ligand, producing high-value chiral α-(hetero)aryl-substituted amines and their derivatives under mild conditions, is reported. The potential synthetic applications of this transformation are demonstrated by the concise synthesis of (S)-nicotine and a CDK8 inhibitor.
Collapse
Affiliation(s)
- Junqian Zhou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yuli He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Zihao Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Brösamlen D, Oestreich M. Ligand-Controlled On-Off Switch of a Silicon-Tethered Directing Group Enabling the Regiodivergent Hydroalkylation of Vinylsilanes under Ni-H Catalysis. Org Lett 2024; 26:977-982. [PMID: 38051157 DOI: 10.1021/acs.orglett.3c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A regiodivergent Ni-H-catalyzed hydroalkylation of vinylsilanes is described. Depending on the ancillary ligand at the nickel catalyst, the regioselectivity can be steered by a directing group attached to the silicon atom. The mild protocols allow for the selective synthesis of either branched or linear alkylsilanes. An example of a vinylgermane is also reported. The method features a broad scope with high functional-group tolerance and follows a radical mechanism.
Collapse
Affiliation(s)
- Daniel Brösamlen
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
18
|
Li Z, Liu B, Yao CY, Gao GW, Zhang JY, Tong YZ, Zhou JX, Sun HK, Liu Q, Lu X, Fu Y. Ligand-Controlled Cobalt-Catalyzed Regio-, Enantio-, and Diastereoselective Oxyheterocyclic Alkene Hydroalkylation. J Am Chem Soc 2024; 146:3405-3415. [PMID: 38282378 DOI: 10.1021/jacs.3c12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metal-hydride-catalyzed alkene hydroalkylation has been developed as an efficient method for C(sp3)-C(sp3) coupling with broad substrate availability and high functional group compatibility. However, auxiliary groups, a conjugated group or a chelation-directing group, are commonly required to attain high regio- and enantioselectivities. Herein, we reported a ligand-controlled cobalt-hydride-catalyzed regio-, enantio-, and diastereoselective oxyheterocyclic alkene hydroalkylation without chelation-directing groups. This reaction enables the hydroalkylation of conjugated and unconjugated oxyheterocyclic alkenes to deliver C2- or C3-alkylated tetrahydrofuran or tetrahydropyran in uniformly good yields and with high regio- and enantioselectivities. In addition, hydroalkylation of C2-substituted 2,5-dihydrofuran resulted in the simultaneous construction of 1,3-distereocenters, providing convenient access to polysubstituted tetrahydrofuran with multiple enantioenriched C(sp3) centers.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Bingxue Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng-Yu Yao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Gen-Wei Gao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Jun-Yang Zhang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Zhou Tong
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Xiang Zhou
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Hao-Kai Sun
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Lu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Domingues L, Duarte ARC, Jesus AR. How Can Deep Eutectic Systems Promote Greener Processes in Medicinal Chemistry and Drug Discovery? Pharmaceuticals (Basel) 2024; 17:221. [PMID: 38399436 PMCID: PMC10892015 DOI: 10.3390/ph17020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Chemists in the medicinal chemistry field are constantly searching for alternatives towards more sustainable and eco-friendly processes for the design and synthesis of drug candidates. The pharmaceutical industry is one of the most polluting industries, having a high E-factor, which is driving the adoption of more sustainable processes not only for new drug candidates, but also in the production of well-established active pharmaceutical ingredients. Deep eutectic systems (DESs) have emerged as a greener alternative to ionic liquids, and their potential to substitute traditional organic solvents in drug discovery has raised interest among scientists. With the use of DESs as alternative solvents, the processes become more attractive in terms of eco-friendliness and recyclability. Furthermore, they might be more effective through making the process simpler, faster, and with maximum efficiency. This review will be focused on the role and application of deep eutectic systems in drug discovery, using biocatalytic processes and traditional organic chemical reactions, as new environmentally benign alternative solvents. Furthermore, herein we also show that DESs, if used in the pharmaceutical industry, may have a significant effect on lowering production costs and decreasing the impact of this industry on the quality of the environment.
Collapse
Affiliation(s)
| | | | - Ana Rita Jesus
- LAQV-REQUIMTE, Chemistry Department, School of Science and Technology, NOVA University, 2829-516 Caparica, Portugal; (L.D.); (A.R.C.D.)
| |
Collapse
|
20
|
Wang Y, He Y, Zhu S. Nickel-Catalyzed Migratory Cross-Coupling Reactions: New Opportunities for Selective C-H Functionalization. Acc Chem Res 2023; 56:3475-3491. [PMID: 37971926 DOI: 10.1021/acs.accounts.3c00540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
ConspectusMigratory cross-coupling via metal migration is a process of significant academic and industrial interest. It provides an attractive alternative for the selective installation of a functional group at remote C-H positions from simple precursors, thus enabling the direct synthesis of challenging structures not accessible with traditional cross-coupling. In particular, with the merger of 1,n-Ni/H shift and cross-coupling of nickel, the Ni-catalyzed migratory functionalization of simple precursors has undergone particularly intense development and emerged as a valuable field of research in the past few years. This Account will outline the recent progress made in this arena in terms of migration-functionalization modes, diverse functionalizations, and strategies for regio- and stereocontrol. Mechanistic studies and synthetic applications are also discussed.In detail, we systematically categorize our work into two parts based on the migration modes. In the first part, a platform is created for Ni-catalyzed migratory sp3 C-H functionalization of alkenes or alkyl halides via iterative 1,2-Ni/H shift-selective cross-coupling. The key reactive Ni(II)H species for chain-walking could be generated in situ either in a polarity-reversed fashion relying on stoichiometric reductants (X-Ni(II)-H) or in a redox-neutral fashion with the participation of nucleophilic coupling partners (FG-Ni(II)-H). One significant advantage associated with the polarity-reversed NiH system is the use of relatively stable, abundant, and safe olefin surrogates or alkyl halides instead of the sensitive organometallics required in traditional cross-coupling reactions. Another advantage is that diverse functionalizations, including carbonation and more challenging amination and thiolation could be smoothly achieved with suitable electrophiles or their precursors. Finally, to address the challenging multifaceted selectivity and reactivity issues in asymmetric migratory cross-coupling reactions, we have developed a feasible ligand relay catalytic strategy. In this dynamic ligand exchange process, one ligand promotes rapid migration while the other promotes highly regio- and stereoselective coupling. This innovative strategy overcomes the formidable challenge stemming from the difficulty of designing a single ligand to efficiently promote both steps of chain-walking and asymmetric coupling. In the second part, a new platform for Ni-catalyzed migratory sp2 C-H functionalization via 1,4-Ni/H shift-selective cross-coupling has been reported. Starting from readily available aryl or vinyl coupling partners, the in situ-generated aryl- or vinylnickel(II) species could undergo a rapid and reversible 1,4-Ni/H shift along an sp2 backbone, and subsequent selective coupling with various coupling partners would allow regio- and stereoselective access to diverse 1,4-migratory functionalization products. The key to success was the discovery of an appropriate ligand to efficiently promote both migration and subsequent selective cross-coupling. A vinyl-to-aryl 1,4-Ni/H shift successfully enables the modular ipso/ortho difunctionalization of aryl coupling partners, while an aryl-to-vinyl 1,4-Ni/H shift enables regio- and stereoselective access to functionalized trisubstituted alkenes.We hope that this Account will inspire broad interest and future development of migratory cross-coupling reactions. We strongly believe that continued efforts in this fascinating field will overcome many of the remaining challenges, including cutting-edge ligand/catalyst design to enhance reactivity and selectivity, conceptually new migration modes for additional transformations, and in-depth mechanistic studies for rational reaction design.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuli He
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Tong WY, Su X, Sun P, Xu S, Qu S, Wang X. Understanding the Reaction Mechanism of Ni-Catalyzed Regio- and Enantioselective Hydroalkylation of Enamines: Chemoselectivity of (Bi-oxazoline)NiH. J Org Chem 2023; 88:15404-15413. [PMID: 37853516 DOI: 10.1021/acs.joc.3c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
This density functional theory study explores the detailed mechanism of nickel-catalyzed hydroalkylation of the C═C bond of N-Cbz-protected enamines (Cbz = benzyloxycarbonyl) with alkyl iodides to give chiral α-alkyl amines. The active catalyst (biOx)NiH, a chiral bioxazoline (biOx)-chelated Ni(I) hydride, exhibits chemoselectivity that favors single electron transfer to the alkyl iodide over C═C hydrometalation with the enamine. This generates an alkyl radical and a Ni(II) intermediate, which takes up the enamine substrate CbzNHCH═CH2CH3 via a regio- and enantioselective C═C insertion into the NiII-H bond. The resulting Ni(II) alkyl complex combines with the alkyl radical, forming a Ni(III) intermediate, from which the alkyl-alkyl reductive elimination delivers the chiral amine product. The regioselectivity arises from a combination of orbital and noncovalent interactions, both of which are induced by the Cbz group. Thus, Cbz plays an additional role in controlling regioselectivity. The enantioselectivity stems from the differing distortion energies of CbzNHCH═CH2CH3. The reductive elimination is the rate-determining step (ΔG⧧ = 18.7 kcal/mol). In addition, the calculations show a noninnocent behavior of the biOx ligand induced by the insertion of CbzNHCH═CH2CH3 into the Ni-H bond of (biOx)NiH. These computationally gained insights can have implications for developing new Ni(I)-catalyzed reactions.
Collapse
Affiliation(s)
- Wen-Yan Tong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xiaoxi Su
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Pengrui Sun
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shaojie Xu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaotai Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
22
|
Liu Q, Zhou Z, Huang Z, Zhao Y. Palladium-Catalyzed E-Selective Oxidative Amination of Aromatic Amine with 3-Butenoic Acid. J Org Chem 2023; 88:15350-15357. [PMID: 37871285 DOI: 10.1021/acs.joc.3c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A palladium-catalyzed oxidative amination of inactive olefins with an aromatic amine was developed using a copper acetate oxidant to yield corresponding secondary and tertiary enamines in moderate to good yields. This new procedure outlines an efficient approach for the construction of enamine skeletons.
Collapse
Affiliation(s)
- Qianqian Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
| | - Zheng Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| |
Collapse
|
23
|
Chen J, Wu L, Zhao Y, Zhu S. Enantio- and Diastereoselective NiH-Catalyzed Hydroalkylation of Enamides or Enecarbamates with Racemic α-Bromoamides. Angew Chem Int Ed Engl 2023; 62:e202311094. [PMID: 37721974 DOI: 10.1002/anie.202311094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Catalytic methods which control multiple stereogenic centers simultaneously are highly desirable in modern organic synthesis and chemical manufacturing. Herein, we report a regio-, enantio-, and diastereoselective NiH-catalyzed hydroalkylation process which proceeds with simultaneous control of vicinal stereocenters originating from two readily accessible partners, prochiral internal alkenes (enamides or enecarbamates) and racemic alkyl electrophiles (α-bromoamides or Katritzky salts). This reaction produces high-value β-aminoamides and their derivatives under mild conditions and with precise selectivity. Preliminary studies of the mechanism indicate that the reaction involves an enantioselective syn-hydronickelation to generate an enantiomerically enriched alkylnickel(II) species. Subsequent enantioconvergent alkylation with a racemic alkyl electrophile generates the desired product as a single stereoisomer.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Lifu Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
24
|
Sun X, Zheng K. Electrochemical halogen-atom transfer alkylation via α-aminoalkyl radical activation of alkyl iodides. Nat Commun 2023; 14:6825. [PMID: 37884528 PMCID: PMC10603137 DOI: 10.1038/s41467-023-42566-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Alkyl halides, widely recognized as important building blocks and reagents in organic synthesis, can serve as versatile alkyl radical precursors in radical-based transformations. However, generating alkyl radicals directly from unactivated alkyl halides under mild conditions remains a challenge due to their extremely low reduction potentials. To address this issue, α-aminoalkyl radicals were employed as efficient halogen-atom transfer (XAT) reagents in the photoredox activation of unactivated alkyl halides. Here, we report an effective electrooxidation strategy for generating alkyl radicals from unactivated alkyl iodides via an electrochemical halogen-atom transfer (e-XAT) process under mild conditions. The α-aminoalkyl radicals generated by anodic oxidation are demonstrated to be efficient XAT reagents in these transformations. This facile electricity-driven strategy obviates the need for sacrificial anodes and external chemical oxidants. The method successfully applies to a wide variety of alkyl iodides, including primary, secondary, and tertiary, as well as structurally diverse olefins, exhibiting excellent functional group tolerance. Moreover, we further demonstrate the utility of this strategy by rapidly functionalizing complex molecules and biomolecules.
Collapse
Affiliation(s)
- Xiang Sun
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
25
|
Yang JS, Lu K, Li CX, Zhao ZH, Zhang FM, Zhang XM, Tu YQ. NiH-Catalyzed Regio- and Enantioselective Hydroalkylation for the Synthesis of β- or γ-Branched Chiral Aromatic N-Heterocycles. J Am Chem Soc 2023; 145:22122-22134. [PMID: 37749771 DOI: 10.1021/jacs.3c07919] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A nickel hydride-catalyzed regio- and enantioselective hydroalkylation reaction was developed to give access to a library of chiral β- or γ-branched aromatic N-heterocycles. This intriguing asymmetric transformation features excellent selectivities, step- and atom-economies, and generating two kinds of chiral products through one synthetic strategy. Furthermore, the possible reaction mechanism was extensively investigated using numerous control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Ju-Song Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chen-Xiao Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zu-Hang Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, College of Pharmaceutical Sciences, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Minhang, China
| |
Collapse
|
26
|
Chen C, Guo W, Qiao D, Zhu S. Synthesis of Enantioenriched 1,2-cis Disubstituted Cycloalkanes by Convergent NiH Catalysis. Angew Chem Int Ed Engl 2023; 62:e202308320. [PMID: 37470299 DOI: 10.1002/anie.202308320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Enantioenriched multi-substituted cycloalkanes constitute an essential class of compounds in pharmaceuticals, natural products and agrochemicals. Here we report an NiH-catalyzed asymmetric migratory hydroalkylation process for the efficient and selective construction of such compounds. Through a dynamic kinetic asymmetric transformation (DYKAT), easily accessible racemic and isomeric mixtures of cycloalkenes could be directly utilized as starting materials, convergently producing thermo-dynamically disfavored chiral 1,2-cis disubstituted cycloalkanes bearing vicinal stereocenters with high levels of regio-, diastereo- and enantioselectivity. In addition, prochiral cyclic alkenes can be also employed, and deliver chiral 1,2-cis disubstituted cycloalkanes through desymmetrization process.
Collapse
Affiliation(s)
- Changpeng Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
| | - Wenqing Guo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
| | - Deyong Qiao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
27
|
Yang H, Ye Y. Recent Progress in NiH-Catalyzed Linear or Branch Hydrofunctionalization of Terminal or Internal Alkenes. Top Curr Chem (Cham) 2023; 381:23. [PMID: 37474812 DOI: 10.1007/s41061-023-00433-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
The construction of C-C and C-X (X = N, O, Si, etc.) bonds is an important field in organic synthesis and methodology. In recent decades, studies on transition metal-catalyzed functionalization of alkenes have been on the rise. The individual properties of different transition metals determine the type of reaction that can be applied. Generally, post-transition metals with a large number of electrons in the d-orbit such as Mn, Fe, Co, Ni, Cu and Zn, etc., can be applied to more reaction types than pre-transition metals with a small number of electrons (e.g., Ti, Zr, etc.). Alkyl nickel intermediates formed by oxidative addition could couple with various of nucleophiles or electrophiles. Moreover, nickel has several oxidation valence states, which can flexibly realize a variety of catalytic cycles. These characteristics make nickel favored by researchers in the field of functionalization of alkenes, especially for the hydrofunctionalization of alkenes. Both terminal and internal alkenes could be converted, and the strategies of synthesizing linear and branched compounds have been expanded. Moreover, the guiding groups in alkenes played an almost decisive role in the regional selectivity, and the ligand or temperature also had regulating effects. Herein, we will give a comprehensive and timely overview of the works about the Ni-catalyzed hydrofunctionalization of alkenes and some insights on regional selectivity.
Collapse
Affiliation(s)
- Huimin Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
28
|
Brösamlen D, Oestreich M. Regioselective Hydroalkylation of Vinyl- and Allylsilanes as Well as Vinylgermanes under Ni-H Catalysis. Org Lett 2023. [PMID: 37418633 DOI: 10.1021/acs.orglett.3c01881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
A Ni-H-catalyzed hydroalkylation of vinylsilanes and -germanes as well as allylsilanes with unactivated alkyl iodides is reported. Unlike related reactions of styrene or vinyl boronate esters, the addition across the C-C double bond proceeds with anti-Markovnikov selectivity to deliver the linear regioisomer. Mechanistic control experiments support a radical mechanism, and a competition experiment reveals that the chemoselectivity is in favor of the vinyl over the allyl group.
Collapse
Affiliation(s)
- Daniel Brösamlen
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
29
|
Wang X, Xue J, Rong ZQ. Divergent Access to Chiral C2- and C3-Alkylated Pyrrolidines by Catalyst-Tuned Regio- and Enantioselective C(sp 3)-C(sp 3) Coupling. J Am Chem Soc 2023. [PMID: 37307532 DOI: 10.1021/jacs.3c03900] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novel-substituted pyrrolidine derivatives are widely used in drugs and bioactive molecules. The efficient synthesis of these valuable skeletons, especially enantiopure derivatives, is still recognized as a key bottleneck to overcome in chemical synthesis. Herein, we report a highly efficient catalyst-tuned regio- and enantioselective hydroalkylation reaction for the divergent synthesis of chiral C2- and C3-alkylated pyrrolidines through desymmetrization of the readily available 3-pyrrolines. The catalytic system consists of CoBr2 with a modified bisoxazoline (BOX) ligand, which can achieve the asymmetric C(sp3)-C(sp3) coupling via the distal stereocontrol, providing a series of C3-alkylated pyrrolidines in high efficiency. Moreover, the nickel catalytic system allows the enantioselective hydroalkylation to synthesize the C2-alkylated pyrrolidines through the tandem alkene isomerization/hydroalkylation reaction. This divergent method uses readily available catalysts, chiral BOX ligands, and reagents, delivering enantioenriched 2-/3-alkyl substituted pyrrolidines with excellent regio- and enantioselectivity (up to 97% ee). We also demonstrate the compatibility of this transformation with complex substrates derived from a series of drugs and bioactive molecules in good efficiency, which offers a distinct entry to more functionalized chiral N-heterocycles.
Collapse
Affiliation(s)
- Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Jing Xue
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| |
Collapse
|
30
|
Zhao WT, Zhang JX, Chen BH, Shu W. Ligand-enabled Ni-catalysed enantioconvergent intermolecular Alkyl-Alkyl cross-coupling between distinct Alkyl halides. Nat Commun 2023; 14:2938. [PMID: 37217551 DOI: 10.1038/s41467-023-38702-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
α-Tertiary aliphatic amides are key elements in organic molecules, which are abundantly present in natural products, pharmaceuticals, agrochemicals, and functional organic materials. Enantioconvergent alkyl-alkyl bond-forming process is one of the most straightforward and efficient, yet highly challenging ways to build such stereogenic carbon centers. Herein, we report an enantioselective alkyl-alkyl cross-coupling between two different alkyl electrophiles to access α-tertiary aliphatic amides. With a newly-developed chiral tridentate ligand, two distinct alkyl halides were successfully cross-coupled together to forge an alkyl-alkyl bond enantioselectively under reductive conditions. Mechanistic investigations reveal that one alkyl halides exclusively undergo oxidative addition with nickel versus in-situ formation of alkyl zinc reagents from the other alkyl halides, rendering formal reductive alkyl-alkyl cross-coupling from easily available alkyl electrophiles without preformation of organometallic reagents.
Collapse
Affiliation(s)
- Wen-Tao Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Jian-Xin Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Bi-Hong Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
31
|
Wang JW, Li Z, Liu D, Zhang JY, Lu X, Fu Y. Nickel-Catalyzed Remote Asymmetric Hydroalkylation of Alkenyl Ethers to Access Ethers of Chiral Dialkyl Carbinols. J Am Chem Soc 2023; 145:10411-10421. [PMID: 37127544 DOI: 10.1021/jacs.3c02950] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Site- and enantio-selective alkyl-alkyl bond formation is privileged in the retrosynthetic analysis due to the universality of sp3-hybridized carbon atoms in organic molecules. Herein, we report a nickel-catalyzed remote asymmetric hydroalkylation of alkenyl ethers via synchronous implementation of alkene isomerization and enantioselective C(sp3)-C(sp3) bond formation. Regression analysis of catalyst structure-activity relationships accelerates the rational ligand modification through modular regulation. This reaction has several advantages for synthesizing chiral dialkyl carbinols and their ether derivatives, including the broad substrate scope, good functional group tolerance, excellent regioselectivity (>20:1 regioisomeric ratio), and high enantioselectivity (up to 95% enantiomeric excess).
Collapse
Affiliation(s)
- Jia-Wang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhen Li
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Deguang Liu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Jun-Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| | - Xi Lu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
32
|
Hu X, Cheng-Sánchez I, Cuesta-Galisteo S, Nevado C. Nickel-Catalyzed Enantioselective Electrochemical Reductive Cross-Coupling of Aryl Aziridines with Alkenyl Bromides. J Am Chem Soc 2023; 145:6270-6279. [PMID: 36881734 PMCID: PMC10037331 DOI: 10.1021/jacs.2c12869] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/09/2023]
Abstract
An electrochemically driven nickel-catalyzed enantioselective reductive cross-coupling of aryl aziridines with alkenyl bromides has been developed, affording enantioenriched β-aryl homoallylic amines with excellent E-selectivity. This electroreductive strategy proceeds in the absence of heterogeneous metal reductants and sacrificial anodes by employing constant current electrolysis in an undivided cell with triethylamine as a terminal reductant. The reaction features mild conditions, remarkable stereocontrol, broad substrate scope, and excellent functional group compatibility, which was illustrated by the late-stage functionalization of bioactive molecules. Mechanistic studies indicate that this transformation conforms with a stereoconvergent mechanism in which the aziridine is activated through a nucleophilic halide ring-opening process.
Collapse
Affiliation(s)
- Xia Hu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Iván Cheng-Sánchez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Sergio Cuesta-Galisteo
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| |
Collapse
|
33
|
Song T, Luo Y, Wang K, Wang B, Yuan Q, Zhang W. Nickel-Catalyzed Remote C(sp 3)–N/O Bond Formation of Alkenes with Unactivated Amines and Alcohols. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Tao Song
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kuiyang Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bingyi Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qianjia Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- College of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, China
| |
Collapse
|
34
|
Liao G, Shi BF. Two birds with one stone: asymmetric construction of vicinal C(sp 3) centres by nickel-catalyzed hydroalkylation of alkenes. Sci Bull (Beijing) 2023; 68:462-464. [PMID: 36813581 DOI: 10.1016/j.scib.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Gang Liao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
35
|
Sheng FT, Wang SC, Zhou J, Chen C, Wang Y, Zhu S. Control of Axial Chirality through NiH-Catalyzed Atroposelective Hydrofunctionalization of Alkynes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Feng-Tao Sheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Shi-Chao Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Junqian Zhou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Changpeng Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People’s Republic of China
| |
Collapse
|
36
|
Haibach MC, Shekhar S, Ahmed TS, Ickes AR. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
37
|
Zhou J, Wang D, Xu W, Hu Z, Xu T. Enantioselective C(sp 3)-C(sp 3) Reductive Cross-Electrophile Coupling of Unactivated Alkyl Halides with α-Chloroboronates via Dual Nickel/Photoredox Catalysis. J Am Chem Soc 2023; 145:2081-2087. [PMID: 36688920 DOI: 10.1021/jacs.2c13220] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Substantial advances in enantioconvergent C(sp3)-C(sp3) bond formations have been made with nickel-catalyzed cross-coupling of racemic alkyl electrophiles with organometallic reagents or nickel-hydride-catalyzed hydrocarbonation of alkenes. Herein, we report an unprecedented enantioselective C(sp3)-C(sp3) reductive cross-coupling by the direct utilization of two different alkyl halides with dual nickel/photoredox catalysis system. This highly selective coupling of racemic α-chloroboronates and unactivated alkyl iodides furnishes chiral secondary alkyl boronic esters, which serve as useful and important intermediates in the realm of organic synthesis and enable a desirable protocol to fast construction of enantioenriched complex molecules.
Collapse
Affiliation(s)
- Jun Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Dong Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Zihao Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| |
Collapse
|
38
|
Li S, Rajeshkumar T, Liu J, Maron L, Zhou X. La-Catalyzed Decarbonylation of Formamides and Its Applications. Org Lett 2023; 25:163-168. [PMID: 36566387 DOI: 10.1021/acs.orglett.2c03981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein we report the first catalytic decarbonylation and decarbonylative hydroamination of formamides without using additives enabled by a redox-neutral rare earth catalyst. The protocol displays complete N-aryl/alkenyl formamide-selectivity, thus providing a wide variety of creative uses of the N-formylation and N-deformylation method and opening up new prospects for minimizing waste and controlling the required selectivity in amine transformation events.
Collapse
Affiliation(s)
- Shaocheng Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | | | - Jincheng Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Laurent Maron
- LPCNO, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Xigeng Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.,State Key Laboratory of Organometallic Chemistry, Shanghai 200032, China
| |
Collapse
|
39
|
Zhang WW, Li BJ. Enantioselective Hydrosilylation of β,β-Disubstituted Enamides to Construct α-Aminosilanes with Vicinal Stereocenters. Angew Chem Int Ed Engl 2023; 62:e202214534. [PMID: 36344453 DOI: 10.1002/anie.202214534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Despite the advances in the area of catalytic alkene hydrosilylation, the enantioselective hydrosilylation of alkenes bearing a heteroatom substituent is scarce. Here we report a rhodium-catalyzed hydrosilylation of β,β-disubstituted enamides to directly afford valuable α-aminosilanes in a highly regio-, diastereo-, and enantioselective manner. Stereodivergent synthesis could be achieved by regulating substrate geometry and ligand configuration to generate all the possible stereoisomers in high enantio-purity.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.,Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
40
|
Bera S, Fan C, Hu X. Enantio- and diastereoselective construction of vicinal C(sp3) centres via nickel-catalysed hydroalkylation of alkenes. Nat Catal 2022. [DOI: 10.1038/s41929-022-00894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Ye Y, Lin Y, Mao ND, Yang H, Ye XY, Xie T. Recent progress in nickel-catalyzed carboboration of alkenes. Org Biomol Chem 2022; 20:9255-9271. [PMID: 36399007 DOI: 10.1039/d2ob01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alkenes represent one of the most useful building blocks for organic synthesis, owing to their abundance and versatile reactivity. Transition metal (Pd, Cu, Co, Ni, Fe, etc.) catalyzed difunctionalization of alkenes provides efficient access to substituted molecules from readily available alkenes by installing functional groups across their carbon-carbon double bonds. Particularly, Nickel-based catalytic complexes have attracted a great deal of attention. This is because they are prone to undergoing oxidative addition and slow β-hydride elimination, and can access both two-electron and radical pathways. Numerous elegant Ni-catalyzed cross-coupling methods, e.g., (hetero)arylboration, alkenylboration, alkylboration and alkynylboration of alkenes, have been developed with broad scopes and a high tolerance to a variety of functional groups. Therefore, the Ni-catalyzed carboboration of alkenes has become an efficient synthetic protocol to deliver substituted compounds by the cross-coupling of alkenes, electrophiles, and B2Pin2. Despite this progress, a number of challenging issues remaining in the field include broadening the types of carboboration reactions, especially the asymmetric ones, diversifying electrophile types (which is limited to halogens for now) and gaining profound insight into the reaction mechanisms. This review summarizes the recent progress in this emerging field from the literature published since 2018. It will provide the scientific community with convenience to access collective information and to accelerate their further research in order to broaden the scope of methodology and application in drug discovery programs.
Collapse
Affiliation(s)
- Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Ying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Huimin Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| |
Collapse
|
42
|
Wang Y, He Y, Zhu S. NiH-Catalyzed Functionalization of Remote and Proximal Olefins: New Reactions and Innovative Strategies. Acc Chem Res 2022; 55:3519-3536. [PMID: 36350093 DOI: 10.1021/acs.accounts.2c00628] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transition metal hydride catalyzed functionalization of remote and proximal olefins has many advantages over conventional cross-coupling reactions. It avoids the separate, prior generation of stoichiometric amounts of organometallic reagents and the use of preformed organometallic reagents, which are sometimes hard to access and may compromise functional group compatibility. The migratory insertion of metal hydride complexes generated in situ into readily available alkene starting materials, the hydrometalation process, provides an attractive and straightforward route to alkyl metal intermediates, which can undergo a variety of sequential cross-coupling reactions. In particular, with the synergistic combination of chain-walking and cross-coupling chemistry of nickel, NiH-catalyzed functionalization of remote and proximal olefins has undergone particularly intense development in the past few years. This Account aims to chronicle the progress made in this arena in terms of activation modes, diverse functionalizations, and chemo-, regio-, and enantioselectivity.We first provide a brief introduction to the general reaction mechanisms. Taking remote hydroarylation as an example, the four oxidation states of Ni have allowed us to develop two different reaction strategies to form the final product: a Ni(I)-H/X-Ni(II)-H platform that relies on stoichiometric reductants and a Ni(I/II/III) cycle and a redox-neutral functional group or FG-Ni(II)-H platform that reacts with an alkene substrate and forms the migratory products via a Ni(0/II) pathway. We also demonstrate that diverse functionalization, including general C-C bond-forming reactions and the more challenging C-N/C-S bond-forming reactions could be realized. Moreover, the employment of appropriate chiral ligands has allowed us to successfully realize the corresponding asymmetric hydrofunctionalization reactions of olefins, including hydroalkylation, hydroarylation, hydroalkenylation, hydroalkynylation, and hydroamination. Interestingly, the enantio-determining step could be enantioselective hydronickelation, selective oxidative addition, or selective reductive elimination. To realize more challenging asymmetric migratory hydrofunctionalization, we have developed a general ligand relay catalytic strategy with a combination of two simple ligands, the first for chain-walking and the second for asymmetric coupling. This novel strategy avoids the design of a single, possibly structurally complex chiral ligand to promote both steps of chain-walking and asymmetric coupling. In addition, the success of multicomponent hydrofunctionalization provides a convenient approach to gain simple access to complex molecules. Finally, alkyl halides could be used as olefin precursors to undergo a variety of reductive migratory cross-electrophile coupling reactions. Applications of these remote hydrofunctionalization reactions are also discussed. We hope this Account will inspire future development in the field to overcome key challenges, including conceptually new catalytic strategies, development of high-performance systems with enhanced reactivity and selectivity, cutting-edge catalyst design, and further mechanistic studies.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuli He
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
43
|
Qi X, Jambu S, Ji Y, Belyk KM, Panigrahi NR, Arora PS, Strotman NA, Diao T. Late-Stage Modification of Oligopeptides by Nickel-Catalyzed Stereoselective Radical Addition to Dehydroalanine. Angew Chem Int Ed Engl 2022; 61:e202213315. [PMID: 36175367 PMCID: PMC9773866 DOI: 10.1002/anie.202213315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 12/24/2022]
Abstract
Radical addition to dehydroalanine (Dha) represents an appealing, modular strategy to access non-canonical peptide analogues for drug discovery. Prior studies on radical addition to the Dha residue of peptides and proteins have demonstrated outstanding functional group compatibility, but the lack of stereoselectivity has limited the synthetic utility of this approach. Herein, we address this challenge by employing chiral nickel catalysts to control the stereoselectivity of radical addition to Dha on oligopeptides. The conditions accommodate a variety of primary and secondary electrophiles to introduce polyethylene glycol, biotin, halo-tag, and hydrophobic and hydrophilic side chains to the peptide. The reaction features catalyst control to largely override substrate-based control of stereochemical outcome for modification of short peptides. We anticipate that the discovery of chiral nickel complexes that confer catalyst control will allow rapid, late-stage modification of peptides featuring nonnatural sidechains.
Collapse
Affiliation(s)
- Xiaoxu Qi
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Subramanian Jambu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Yining Ji
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Kevin M Belyk
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Nihar R Panigrahi
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Neil A Strotman
- Department of Process Research and Development, Institution Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, USA
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
44
|
Jiang X, Sheng FT, Zhang Y, Deng G, Zhu S. Ligand Relay Catalysis Enables Asymmetric Migratory Reductive Acylation of Olefins or Alkyl Halides. J Am Chem Soc 2022; 144:21448-21456. [DOI: 10.1021/jacs.2c10785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xiaoli Jiang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Feng-Tao Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Yao Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Gao Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang453007, China
| |
Collapse
|
45
|
Li L, Ren J, Zhou J, Wu X, Shao Z, Yang X, Qian D. Enantioselective synthesis of N-alkylindoles enabled by nickel-catalyzed C-C coupling. Nat Commun 2022; 13:6861. [PMID: 36369422 PMCID: PMC9652415 DOI: 10.1038/s41467-022-34615-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Enantioenriched N-alkylindole compounds, in which nitrogen is bound to a stereogenic sp3 carbon, are an important entity of target molecules in the fields of biological, medicinal, and organic chemistry. Despite considerable efforts aimed at inventing methods for stereoselective indole functionalization, straightforward access to a diverse range of chiral N-alkylindoles in an intermolecular catalytic fashion from readily available indole substrates remains an ongoing challenge. In sharp contrast to existing C-N bond-forming strategies, here, we describe a modular nickel-catalyzed C-C coupling protocol that couples a broad array of N-indolyl-substituted alkenes with aryl/alkenyl/alkynyl bromides to produce chiral N-alkylindole adducts in single regioisomeric form, in up to 91% yield and 97% ee. The process is amenable to proceed under mild conditions and exhibit broad scope and high functional group compatibility. Utility is highlighted through late-stage functionalization of natural products and drug molecules, preparation of chiral building blocks.
Collapse
Affiliation(s)
- Lun Li
- grid.440773.30000 0000 9342 2456Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Jiangtao Ren
- grid.440773.30000 0000 9342 2456Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China ,Southwest United Graduate School, Kunming, China
| | - Jingjie Zhou
- grid.440773.30000 0000 9342 2456Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaomei Wu
- grid.440773.30000 0000 9342 2456Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Zhihui Shao
- grid.440773.30000 0000 9342 2456Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China ,Southwest United Graduate School, Kunming, China
| | - Xiaodong Yang
- grid.440773.30000 0000 9342 2456Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Deyun Qian
- grid.440773.30000 0000 9342 2456Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
46
|
Zhang JX, Yang PF, Shu W. Access to dialkylated allylic stereogenic centers by Ni-catalysed enantioselective hydrovinylation of unactivated alkenes. Chem Sci 2022; 13:11405-11410. [PMID: 36320572 PMCID: PMC9533468 DOI: 10.1039/d2sc04350e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/12/2022] [Indexed: 07/22/2023] Open
Abstract
Tertiary dialkylated allylic stereogenic centers are widespread substructures in bioactive molecules and natural products. However, enantioselective access to dialkyl substituted allylic motifs remains a long-term challenge. Herein, a straightforward protocol to build allylic dialkylated stereogenic centers enabled by nickel-catalysed regio- and enantioselective hydrovinylation of isolated unactivated alkenes facilitated by a weakly coordinating group with vinyl bromides was developed, affording dialkylated allylic species in good yields with excellent enantioselectivities. The reaction distinguishes distinct alkenes and works for both terminal and internal aliphatic alkenes. The reaction proceeds under mild conditions and tolerates a wide range of functional groups.
Collapse
Affiliation(s)
- Jian-Xin Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Peng-Fei Yang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
47
|
de Gonzalo G, Alcántara AR, Domínguez de María P, Sánchez-Montero JM. Biocatalysis for the asymmetric synthesis of Active Pharmaceutical Ingredients (APIs): this time is for real. Expert Opin Drug Discov 2022; 17:1159-1171. [PMID: 36045591 DOI: 10.1080/17460441.2022.2114453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Biocatalysis has emerged as a powerful and useful strategy for the synthesis of active pharmaceutical ingredients (APIs). The outstanding developments in molecular biology techniques allow nowadays the screening, large-scale production, and designing of biocatalysts, adapting them to desired reactions. Many enzymes can perform reactions both in aqueous and non-aqueous media, broadening even further the opportunities to integrate them in complex pharmaceutical multi-step syntheses. AREAS COVERED This paper showcases several examples of biocatalysis in the pharmaceutical industry, covering examples of different enzymes, such as lipases, oxidoreductases, and transaminases, to deliver active drugs through complex synthetic routes. Examples are critically discussed in terms of reaction conditions, motivation for using an enzyme, and how biocatalysts can be integrated in multi-step syntheses. When possible, biocatalytic routes are benchmarked with chemical reactions. EXPERT OPINION The reported enzymatic examples are performed with high substrate loadings (>100 g L-1) and with excellent selectivity, making them inspiring strategies for present and future industrial applications. The combination of powerful molecular biology techniques with the needs of the pharmaceutical industry can be aligned, creating promising platforms for synthesis under more sustainable conditions.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, Sevilla, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | - José María Sánchez-Montero
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
48
|
Enantioselective synthesis of α-aminoboronates by NiH-catalysed asymmetric hydroamidation of alkenyl boronates. Nat Commun 2022; 13:5630. [PMID: 36163363 PMCID: PMC9512809 DOI: 10.1038/s41467-022-33411-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
Chiral α-aminoboronic acids and their derivatives are generally useful as bioactive compounds and some have been approved as therapeutic agents. Here we report a NiH-catalysed asymmetric hydroamidation process that with a simple amino alcohol ligand can easily produce a wide range of highly enantioenriched α-aminoboronates from alkenyl boronates and dioxazolones under mild conditions. The reaction is proposed to proceed by an enantioselective hydrometallation followed by an inner-sphere nitrenoid transfer and C–N bond forming sequence. The synthetic utility of this transformation was demonstrated by the efficient synthesis of a current pharmaceutical agent, Vaborbactam. Enantioenriched α-aminoboronic acid, a structural unit in many bioactive molecules, is also a valuable synthon in organic synthesis. Here, the authors disclose a NiH-catalysed asymmetric hydroamidation process for their direct synthesis.
Collapse
|
49
|
Wang J, Liu D, Chang Z, Li Z, Fu Y, Lu X. Nickel‐Catalyzed Switchable Site‐Selective Alkene Hydroalkylation by Temperature Regulation**. Angew Chem Int Ed Engl 2022; 61:e202205537. [DOI: 10.1002/anie.202205537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jia‐Wang Wang
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| | - De‐Guang Liu
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| | - Zhe Chang
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| | - Zhen Li
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| | - Yao Fu
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| | - Xi Lu
- School of Chemistry and Materials Science CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
50
|
Xia T, Xi Y, Ding H, Zhang Y, Fang K, Wu X, Qu J, Chen Y. Palladium(II)-catalyzed enantioselective intermolecular oxidative diarylation of internal enamides. Chem Commun (Camb) 2022; 58:9282-9285. [PMID: 35904065 DOI: 10.1039/d2cc03202c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of vicinal stereogenic centers via the simultaneous formation of two C-C bonds across alkenes under oxidative conditions is a stubborn challenge. Herein, we report a Pd(II)-catalyzed highly enantioselective intermolecular oxidative 1,2-diarylation reaction of internal enamides with aryl boronic acids, enabling the expedient construction of two vicinal stereocenters with excellent diastereo-, and enantioselectivities.
Collapse
Affiliation(s)
- Tingting Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Haojie Ding
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yetong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Ke Fang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|