1
|
Jones TJ, Dutton KG, Dhattarwal HS, Blackburn PT, Saha R, Remsing RC, Lipke MC. Tuning Bro̷nsted Acidity by up to 12 p Ka Units in a Redox-Active Nanopore Lined with Multifunctional Metal Sites. J Am Chem Soc 2025; 147:2086-2098. [PMID: 39746663 DOI: 10.1021/jacs.4c15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Electrostatic interactions, hydrogen bonding, and solvation effects can alter the free energies of ionizable functional groups in proteins and other nanoporous architectures, allowing such structures to tune acid-base chemistry to support specific functions. Herein, we expand on this theme to examine how metal sites (M = H2, ZnII, CoII, CoI) affect the pKa of benzoic acid guests bound in discrete porphyrin nanoprisms (M3TriCage) in CD3CN. These host-guest systems were chosen to model how porous metalloporphyrin electrocatalysts might influence H+ transfer processes that are needed to support important electrochemical reactions (e.g., reductions of H+, O2, or CO2). Usefully, the cavities of the host-guest complexes become hydrated at low water concentrations (10-40 mM), providing a good representation of the active sites of porous electrocatalysts in water. Under these conditions, Lewis acidic CoII and ZnII ions increase the Bro̷nsted acidities of the guests by 4 and 8 pKa units, respectively, while reduction of the CoII sites to anionic CoI sites produces an electrostatic potential that lowers acidity by ca. 4 units (8 units relative to the CoII state). Lacking functional metal sites, H6TriCage increases the acidity of the guests by just 2.5 pKa units despite the 12+ charge of this host and contributions from other factors (hydrogen bonding, hydration) that might stabilize the deprotonated guests. Thus, the metal sites have dominant effects on acid-base chemistry in the M3TriCages, providing a larger pKa range (12.75 to ≥24.5) for an encapsulated acid than attained via other confinement effects in proteins and artificial porous materials.
Collapse
Affiliation(s)
- Taro J Jones
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Kaitlyn G Dutton
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Harender S Dhattarwal
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - P Thomas Blackburn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Rupak Saha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Gia AP, de Juan A, Aranda D, Guijarro FG, Aragó J, Ortí E, García-Iglesias M, González-Rodríguez D. Highly Rigid, Yet Conformationally Adaptable, Bisporphyrin sp2-Cage Receptors Afford Outstanding Binding Affinities, Chelate Cooperativities, and Substrate Selectivities. J Am Chem Soc 2025; 147:918-931. [PMID: 39700308 PMCID: PMC11726566 DOI: 10.1021/jacs.4c13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
If we aim to develop efficient synthetic models of protein receptors and enzymes, we must understand the relationships of intra- and intermolecular interactions between hosts and guests and how they mutually influence their conformational energy landscape so as to adapt to each other to maximize binding energies and enhance substrate selectivities. Here, we introduce a novel design of cofacial (ZnII)bisporphyrin cages based on dynamic imine bonding, which is synthetically simple, but at the same time highly robust and versatile, affording receptors composed of only sp2-hybridized C and N atoms. The high structural rigidity of these cages renders them ideal hosts for ditopic molecules that can fit into the cavity and bind to both metal centers, leading to association constants as high as 109 M-1 in chloroform. These strong binding affinities are a consequence of the remarkable chelate cooperativities attained, with effective molarity (EM) values reaching record values over 103 M. However, we discovered that the cages can still adapt their structure to a more compact version, able to host slightly smaller guests. Such a conformational transition has an energy cost, which can be very different depending on the direction of the imine linkages in the cage skeleton and which results in EM values 2-3 orders of magnitude lower. This interplay between cooperativity and conformational adaptability leads to strong and unusual selectivities. Not only these metalloporphyrin receptors can choose to bind preferably to a particular guest, as a function of its size, but also the guest can select which host to bind, as a function now of the host's conformational rigidity. Such highly cooperative and selective associations are lost, however, in related flexible receptors where the imine bonds are reduced.
Collapse
Affiliation(s)
- A. Priscila Gia
- Nanostructured
Molecular Systems and Materials group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Alberto de Juan
- Nanostructured
Molecular Systems and Materials group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Daniel Aranda
- Institute
of Molecular Science, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
| | - Fernando G. Guijarro
- Nanostructured
Molecular Systems and Materials group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Juan Aragó
- Institute
of Molecular Science, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
| | - Enrique Ortí
- Institute
of Molecular Science, Universidad de Valencia, Catedrático José Beltrán
2, Paterna 46980, Spain
| | - Miguel García-Iglesias
- QUIPRE
Department, Nanomedicine-IDIVAL, Universidad
de Cantabria, Avd. de
Los Castros, 46, Santander 39005, Spain
| | - David González-Rodríguez
- Nanostructured
Molecular Systems and Materials group, Organic Chemistry Department, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
3
|
Zhang D, Snider RL, Crawley MR, Fang M, Sanchez-Lievanos KR, Ang S, Cook TR. Gram-Scale, One-Pot Synthesis of a Cofacial Porphyrin Bridged by Ortho-xylene as a Scaffold for Dinuclear Architectures. Inorg Chem 2024; 63:22532-22541. [PMID: 39531411 DOI: 10.1021/acs.inorgchem.4c03958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report the reaction between four 1,2-dibromoxylenes and two tetra-3-pyridylporphyrins for the formation of a cofacial porphyrin core spanned by dipyridinium xylene moieties. The metal-free organic nanocage (oNC) was synthesized in one twenty-four h step at a gram-scale with a 91.5% yield. The free base oNC was subsequently metalated with cobalt(II) (Co-oNC), copper(II) (Cu-oNC), and nickel(II) (Ni-oNC) ions to furnish dinuclear complexes that were characterized by mix of mass spectrometry, NMR, EPR, electronic absorption spectroscopy, and for Co-oNC, single-crystal X-ray diffraction. Cofacial cobalt porphyrins are often active as catalysts for the Oxygen Reduction Reaction. Under heterogeneous conditions in water, Co-oNC was 83% selective for the electrocatalytic 4 e-/4 H+ reduction of O2 to H2O, matching homogeneous experiments which revealed consistent selectivity for H2O (88%). This oNC core offers significant advantages over prisms formed by coordination-driven self-assembly: the dipyridnium-xylene coupling can furnish over 1 g of material in a single synthesis and the tethering motif is robust, maintaining a cofacial architecture in acidic and basic solutions. We envision this approach may be generalized to other bis-bromobenzyl building blocks, providing a means to tune metal-metal separation and other structural and electronic properties.
Collapse
Affiliation(s)
- Daoyang Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Rachel L Snider
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Ming Fang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Karla R Sanchez-Lievanos
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Spencer Ang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| |
Collapse
|
4
|
Han J, Tan H, Guo K, Lv H, Peng X, Zhang W, Lin H, Apfel UP, Cao R. The "Pull Effect" of a Hanging Zn II on Improving the Four-Electron Oxygen Reduction Selectivity with Co Porphyrin. Angew Chem Int Ed Engl 2024; 63:e202409793. [PMID: 38923266 DOI: 10.1002/anie.202409793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Due to the challenge of cleaving O-O bonds at single Co sites, mononuclear Co complexes typically show poor selectivity for the four-electron (4e-) oxygen reduction reaction (ORR). Herein, we report on selective 4e- ORR catalyzed by a Co porphyrin with a hanged ZnII ion. Inspired by Cu/Zn-superoxide dismutase, we designed and synthesized 1-CoZn with a hanging ZnII at the second sphere of a Co porphyrin. Complex 1-CoZn is much more effective than its Zn-lacking analogues to catalyze the 4e- ORR in neutral aqueous solutions, giving an electron number of 3.91 per O2 reduction. With spectroscopic studies, the hanging ZnII was demonstrated to be able to facilitate the electron transfer from CoII to O2, through an electronic "pull effect", to give CoIII-superoxo. Theoretical studies further suggested that this "pull effect" plays crucial roles in assisting O-O bond cleavage. This work is significant to present a new strategy of hanging a ZnII to improve O2 activation and O-O bond cleavage.
Collapse
Affiliation(s)
- Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Huang Tan
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Activation of Small Molecules/Technical Electrochemistry, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
5
|
He L, Jiang Y, Wei J, Zhang Z, Hong T, Ren Z, Huang J, Huang F, Stang PJ, Li S. Highly robust supramolecular polymer networks crosslinked by a tiny amount of metallacycles. Nat Commun 2024; 15:3050. [PMID: 38594237 PMCID: PMC11004166 DOI: 10.1038/s41467-024-47333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Supramolecular polymeric materials have exhibited attractive features such as self-healing, reversibility, and stimuli-responsiveness. However, on account of the weak bonding nature of most noncovalent interactions, it remains a great challenge to construct supramolecular polymeric materials with high robustness. Moreover, high usage of supramolecular units is usually necessary to promote the formation of robust supramolecular polymeric materials, which restrains their applications. Herein, we describe the construction of highly robust supramolecular polymer networks by using only a tiny amount of metallacycles as the supramolecular crosslinkers. A norbornene ring-opening metathesis copolymer with a 120° dipyridine ligand is prepared and self-assembled with a 60° or 120° Pt(II) acceptor to fabricate the metallacycle-crosslinked polymer networks. With only 0.28 mol% or less pendant dipyridine units to form the metallacycle crosslinkers, the mechanical properties of the polymers are significantly enhanced. The tensile strengths, Young's moduli, and toughness of the reinforced polymers reach up to more than 20 MPa, 600 MPa, and 150 MJ/m3, respectively. Controllable destruction and reconstruction of the metallacycle-crosslinked polymer networks are further demonstrated by the sequential addition of tetrabutylammonium bromide and silver triflate, indicative of good stimuli-responsiveness of the networks. These remarkable performances are attributed to the thermodynamically stable, but dynamic metallacycle-based supramolecular coordination complexes that offer strong linkages with good adaptive characteristics.
Collapse
Affiliation(s)
- Lang He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, P. R. China
| | - Yu Jiang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Jialin Wei
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, P. R. China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, P. R. China
| | - Tao Hong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Zhiqiang Ren
- School of Materials Science and Engineering, Peking University, Beijing, P. R. China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, P. R. China.
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, P. R. China.
| |
Collapse
|
6
|
Liu X, Liu C, Song X, Ding X, Wang H, Yu B, Liu H, Han B, Li X, Jiang J. Cofacial porphyrin organic cages. Metals regulating excitation electron transfer and CO 2 reduction electrocatalytic properties. Chem Sci 2023; 14:9086-9094. [PMID: 37655043 PMCID: PMC10466316 DOI: 10.1039/d3sc01816d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Herein, we introduce a comprehensive study of the photophysical behaviors and CO2 reduction electrocatalytic properties of a series of cofacial porphyrin organic cages (CPOC-M, M = H2, Co(ii), Ni(ii), Cu(ii), Zn(ii)), which are constructed by the covalent-bonded self-assembly of 5,10,15,20-tetrakis(4-formylphenyl)porphyrin (TFPP) and chiral (2-aminocyclohexyl)-1,4,5,8-naphthalenetetraformyl diimide (ANDI), followed by post-synthetic metalation. Electronic coupling between the TFPP donor and naphthalene-1,4 : 5,8-bis(dicarboximide) (NDI) acceptor in the metal-free cage is revealed to be very weak by UV-vis spectroscopic, electrochemical, and theoretical investigations. Photoexcitation of CPOC-H2, as well as its post-synthetic Zn and Co counterparts, leads to fast energy transfer from the triplet state porphyrin to the NDI unit according to the femtosecond transient absorption spectroscopic results. In addition, CPOC-Co enables much better electrocatalytic activity for CO2 reduction reaction than the other metallic CPOC-M (M = Ni(ii), Cu(ii), Zn(ii)) and monomeric porphyrin cobalt compartment, supplying a partial current density of 18.0 mA cm-2 at -0.90 V with 90% faradaic efficiency of CO.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Chenxi Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiaojuan Song
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Heyuan Liu
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiyou Li
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
7
|
Yuan R, Wei Y, Xue Z, Wang A, Zhang J, Xu H, Zhao L. Effects of support material and electrolyte on a triphenylamine substituted cobalt porphyrin catalytic oxygen reduction reaction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
Zhang D, Crawley MR, Oldacre AN, Kyle LJ, MacMillan SN, Cook TR. Lowering the Symmetry of Cofacial Porphyrin Prisms for Selective Oxygen Reduction Electrocatalysis. Inorg Chem 2023; 62:1766-1775. [PMID: 35699516 DOI: 10.1021/acs.inorgchem.2c01109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cofacial porphyrin catalysts for the Oxygen Reduction Reaction (ORR) formed via coordination-driven self-assembly have so far been limited to designs with fourfold symmetry, where four molecular clips bridge two porphyrin sites. We have synthesized six PynPhm (Py = pyridyl, Ph = phenyl) metalloporphyrin prisms (Co2+, Zn2+) bridged by molecular clips containing two Rh3+ centers. Four of these structures are lower symmetry, with the Py3Ph and Py2Ph2 prisms containing three and two molecular clips, respectively. The Co2+ species were evaluated for their ORR activity. Cyclic and hydrodynamic voltammetry studies of heterogeneous catalyst inks in aqueous media revealed marked differences in selectivity from ∼5% (Py3Ph) to ∼37% (Py2Ph2) for the formation of H2O2. The single-crystal X-ray structure of the Zn2 Py2Ph2 prism shows an offset between the porphyrin faces. This structural feature may be responsible for the change in selectivity, consistent with previous studies of covalently tethered cofacial porphyrins that have shown that geometry is a critical determinant of two-electron/two-proton versus four-electron/four-proton pathways. Extraction of standard rate constants ks for the ORR revealed a cofacial enhancement of ∼2 orders of magnitude over mononuclear Co2+ tetrapyridyl porphyrin. Even though all the prisms described here use the same molecular clip, the resultant structures, and thus the reactivity for the ORR, differ significantly based on the number and orientation of pyridyl donor groups on the porphyrins, highlighting how coordination-driven self-assembly can be used to rapidly tune dinuclear catalysts.
Collapse
Affiliation(s)
- Daoyang Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Amanda N Oldacre
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Lea J Kyle
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
9
|
Chen X, Dai Y, Zhang H, Zhao X. Revealing the steric effects of cobalt porphyrin on the selectivity of oxygen reduction reaction. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Crawley MR, Zhang D, Cook TR. Electrocatalytic Production of Hydrogen Peroxide Enabled by Post-Synthetic Modification of a Self-Assembled Porphyrin Cube. Inorg Chem Front 2023; 10:316-324. [PMID: 36683828 PMCID: PMC9850795 DOI: 10.1039/d2qi02050e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Self-assembled metallacyles and cages formed via coordination chemistry have been used as catalysts to enforce 4H+/4e- reduction of oxygen to water with an emphasis on attenuating the formation of hydrogen peroxide. That said, the kinetically favored 2H+/2e- reduction to H2O2 is critically important to industry. In this work we report the synthesis, characterization, and electrochemical benchmarking of a hexa-porphyrin cube which catalyses the electrochemical reduction of molecular oxgyen to hydrogen peroxide. An established sub-component self-assembly approach was used to synthesize the cubic free-base porphryin topologies from 2-pyridinecarboxaldehyde, tetra-4-aminophenylporphryin (TAPP), and Fe(OTf)2 (OTf- = trifluoromethansulfonate). Then, a tandem metalation/transmetallation was used to introduce Co(II) into the porphyrin faces of the cube, and exchange with the Fe(II) cations at the vertices, furnishing a tetrakaideca cobalt cage. Electron paramagnetic resonance studies on a Cu(II)/Fe(II) analogue probed radical interactions which inform on electronic structure. The efficacy and selectivity of the CoCo-cube as a catalyst for hydrogen peroxide generation was investigated using hydrodynamic voltammetry, revealing a higher selectivity than that of a mononuclear Co(II) porphyrin (83% versus ~50%) with orders of magnitude enhancement in standard rate constant (ks = 2.2 × 102 M-1s-1 versus ks = 3 × 100 M-1s-1). This work expands the use of coordination-driven self-assembly beyond ORR to water by exploiting post-synthetic modification and structural control that is associated with this synthetic method.
Collapse
Affiliation(s)
- Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Daoyang Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
11
|
Synthesis of New Cobalt(III) Meso-Porphyrin Complex, Photochemical, X-ray Diffraction, and Electrical Properties for Photovoltaic Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248866. [PMID: 36558000 PMCID: PMC9785790 DOI: 10.3390/molecules27248866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
The present work describes the preparation and characterization of a new cobalt(III) porphyrin coordination compound named (chlorido)(nicotinoylchloride)[meso-tetra(para-chlorophenyl)porphyrinato]cobalt(III) dichloromethane monosolvate with the formula [CoIII(TClPP)Cl(NTC)]·CH2Cl2 (4). The single-crystal X-ray molecular structure of 4 shows very important ruffling and waving distortions of the porphyrin macrocycle. The Soret and Q absorption bands of 4 are very red-shifted as a consequence of the very distorted porphyrin core. This coordination compound was also studied by fluorescence and cyclic voltammetry. The efficiency of our four porphyrinic compounds-the H2TClPP (1) free-base porphyrin, the [CoII(TClPP)] (2) and [CoIII(TClPP)Cl] (3) starting materials, and the new Co(III) metalloporphyrin [CoIII(TClPP)Cl(NTC)]·CH2Cl2 (4)-as catalysts in the photochemical degradation was tested on malachite green (MG) dye. The current voltage of complexes 3 and 4 was also studied. Electrical parameters, including the saturation current density (Js) and barrier height (ϕb), were measured.
Collapse
|
12
|
Zhang D, Crawley MR, Fang M, Kyle LJ, Cook TR. The rigidity of self-assembled cofacial porphyrins influences selectivity and kinetics of oxygen reduction electrocatalysis. Dalton Trans 2022; 51:18373-18377. [PMID: 36411983 DOI: 10.1039/d2dt02724k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report the electrocatalytic Oxygen Reduction Reaction on a rigid Co(II) porphyrin prism scaffold bridged by Ag(I) ions. The reactivity of this scaffold differs significantly from previous prism catalysts in that its selectivity is similar to that of monomer (∼35% H2O) yet it displays sluggish kinetics, with an order of magnitude lower ks of ∼0.5 M-1 s-1. The deleterious cofacial effect is not simply due to metal-metal separation, which is similar to our most selective prism catalysts. Instead we conclude the structural rigidity is responsible for these differences.
Collapse
Affiliation(s)
- Daoyang Zhang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA.
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA.
| | - Ming Fang
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA.
| | - Lea J Kyle
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA.
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, 14260, USA.
| |
Collapse
|
13
|
Huang X, Chen L, Jin J, Kim H, Chen L, Zhang Z, Yu L, Li S, Stang PJ. Host–Guest Encapsulation to Promote the Formation of a Multicomponent Trigonal-Prismatic Metallacage. Inorg Chem 2022; 61:20237-20242. [DOI: 10.1021/acs.inorgchem.2c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Xuechun Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Luyi Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jianan Jin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hyunuk Kim
- Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon 305-343, Republic of Korea
| | - Luyao Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zibin Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ling Yu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shijun Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Blackburn PT, Lipke MC. Effects of a triangular nanocage structure on the binding of neutral and anionic ligands to Co II and Zn II porphyrins. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2128786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- P. Thomas Blackburn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mark C. Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
15
|
Bai L, Wang N, Li Y. Controlled Growth and Self-Assembly of Multiscale Organic Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102811. [PMID: 34486181 DOI: 10.1002/adma.202102811] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Currently, organic semiconductors (OSs) are widely used as active components in practical devices related to energy storage and conversion, optoelectronics, catalysis, and biological sensors, etc. To satisfy the actual requirements of different types of devices, chemical structure design and self-assembly process control have been synergistically performed. The morphology and other basic properties of multiscale OS components are governed on a broad scale from nanometers to macroscopic micrometers. Herein, the up-to-date design strategies for fabricating multiscale OSs are comprehensively reviewed. Related representative works are introduced, applications in practical devices are discussed, and future research directions are presented. Design strategies combining the advances in organic synthetic chemistry and supramolecular assembly technology perform an integral role in the development of a new generation of multiscale OSs.
Collapse
Affiliation(s)
- Ling Bai
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Ning Wang
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
| | - Yuliang Li
- Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, No. 27 # Shanda South Street, Jinan, 250100, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, No. 2 # Zhongguancun North First Street, Beijing, 100190, P. R. China
| |
Collapse
|
16
|
Howlader P, Ahmed S, Mondal S, Zangrando E, Mukherjee PS. Conformation-Selective Self-Assembly of Pd 6 Trifacial Molecular Barrels Using a Tetrapyridyl Ligand. Inorg Chem 2022; 61:8121-8125. [PMID: 35559685 DOI: 10.1021/acs.inorgchem.2c01081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A conformationally flexible tetrapyridyl ligand L was assembled separately with three cis-blocked 90° PdII acceptors (M1, M2, and M3) containing different blocking diamines. Surprisingly, different conformations of the donor L were arrested by the acceptors depending on the nature of the blocking amine, leading to the formation of isomeric Pd6 barrels (B1, B2, and B3). B2 and B3 with larger windows have been used to encapsulate polyaromatic hydrocarbons.
Collapse
Affiliation(s)
- Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shakil Ahmed
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Surajit Mondal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Cai Q, Tran LK, Qiu T, Eddy JW, Pham TN, Yap GPA, Rosenthal J. An Easily Prepared Monomeric Cobalt(II) Tetrapyrrole Complex That Efficiently Promotes the 4e -/4H + Peractivation of O 2 to Water. Inorg Chem 2022; 61:5442-5451. [PMID: 35358381 DOI: 10.1021/acs.inorgchem.1c03766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective 4e-/4H+ reduction of dioxygen to water is an important reaction that takes place at the cathode of fuel cells. Monomeric aromatic tetrapyrroles (such as porphyrins, phthalocyanines, and corroles) coordinated to Co(II) or Co(III) have been considered as oxygen reduction catalysts due to their low cost and relative ease of synthesis. However, these systems have been repeatedly shown to be selective for O2 reduction by the less desired 2e-/2H+ pathway to yield hydrogen peroxide. Herein, we report the initial synthesis and study of a Co(II) tetrapyrrole complex based on a nonaromatic isocorrole scaffold that is competent for 4e-/4H+ oxygen reduction reaction (ORR). This Co(II) 10,10-dimethyl isocorrole (Co[10-DMIC]) is obtained in just four simple steps and has excellent yield from a known dipyrromethane synthon. Evaluation of the steady state spectroscopic and redox properties of Co[10-DMIC] against those of Co porphyrin (cobalt 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin, [Co(TPFPP)]) and corrole (cobalt 5,10,15-tris(pentafluorophenyl)corrole triphenylphosphine, Co[TPFPC](PPh3)) homologues demonstrated that the spectroscopic and electrochemical properties of the isocorrole are distinct from those displayed by more traditional aromatic tetrapyrroles. Further, the investigation of the ORR activity of Co[10-DMIC] using a combination of electrochemical and chemical reduction studies revealed that this simple, unadorned monomeric Co(II) tetrapyrrole is ∼85% selective for the 4e-/4H+ reduction of O2 to H2O over the more kinetically facile 2e-/2H+ process that delivers H2O2. In contrast, the same ORR evaluations conducted for the Co porphyrin and corrole homologues demonstrated that these traditional aromatic systems catalyze the 2e-/2H+ conversion of O2 to H2O2 with near complete selectivity. Despite being a simple, easily prepared, monomeric tetrapyrrole platform, Co[10-DMIC] supports an ORR catalysis that has historically only been achieved using elaborate porphyrinoid-based architectures that incorporate pendant proton-transfer groups or ditopic molecular clefts or that impose cofacially oriented O2 binding sites. Accordingly, Co[10-DMIC] represents the first simple, unadorned, monomeric metalloisocorrole complex that can be easily prepared and shows a privileged performance for the 4e-/4H+ peractivation of O2 to water as compared to other simple cobalt containing tetrapyrroles.
Collapse
Affiliation(s)
- Qiuqi Cai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Linh K Tran
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Tian Qiu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jennifer W Eddy
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Trong-Nhan Pham
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
18
|
Fang S, Wang M, Wu Y, Guo QH, Li E, Li H, Huang F. Cagearenes: synthesis, characterization, and application for programmed vapor release. Chem Sci 2022; 13:6254-6261. [PMID: 35733889 PMCID: PMC9159107 DOI: 10.1039/d2sc01782b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Here, we announce the establishment of a new family of organic molecular cages, named cagearenes, by taking advantage of a versatile strategy. These cagearenes were prepared via the Friedel–Crafts reaction by condensing two equivalents of a precursor bearing three 1,4-dimethoxybenzene groups and three equivalents of formaldehyde. Two cages, namely cagearene-1 and cagearene-2, are obtained and well characterized. The cagearene-1 solid exhibits the ability to adsorb benzene vapour from an equimolar benzene/cyclohexane mixture with a purity of 91.1%. Then, the adsorbed benzene molecules can be released from the cage at a relatively lower temperature, namely 70 °C, as a consequence of which, cyclohexane with a high purity was left within the cage solid. Heating the cage solid further at 130 °C led to the production of cyclohexane with a purity up to 98.7%. As inferred from the single crystal structures and theoretical calculations, the ability of the cage in programmed release of benzene and cyclohexane results from the different binding modes of these two guests. Two organic cages, cagearene-1 and cagearene-2, are prepared. The cagearene-1 solid selectively absorbs benzene vapor from a benzene/cyclohexane mixture and is used to achieve temperature-controlled programmed vapor release.![]()
Collapse
Affiliation(s)
- Shuai Fang
- Department of Chemistry, State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China +86 571 87953189
| | - Mengbin Wang
- Department of Chemistry, State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China +86 571 87953189
| | - Yating Wu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China
| | - Qing-Hui Guo
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| | - Errui Li
- Department of Chemistry, State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China +86 571 87953189
| | - Hao Li
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| | - Feihe Huang
- Department of Chemistry, State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Zhejiang University Hangzhou 310027 P. R. China +86 571 87953189
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
| |
Collapse
|
19
|
Blackburn PT, Mansoor IF, Dutton KG, Tyryshkin AM, Lipke MC. Accessing three oxidation states of cobalt in M 6L 3 nanoprisms with cobalt-porphyrin walls. Chem Commun (Camb) 2021; 57:11342-11345. [PMID: 34642705 DOI: 10.1039/d1cc04860k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanocages with porphyrin walls are common, but studies of such structures hosting redox-active metals are rare. Pt2+-linked M6L3 nanoprisms with cobalt-porphyrin walls were prepared and their redox properties were evaluated electrochemically and chemically, leading to the first time that cobalt-porphyrin nanocages have been characterized in CoI, CoII, and CoIII states.
Collapse
Affiliation(s)
- P Thomas Blackburn
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Iram F Mansoor
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Kaitlyn G Dutton
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Alexei M Tyryshkin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
20
|
Wang S, Huang X, Xu Z, Zhu B, Ye Y, Zhang Z, Li S. Influence of solvent and axial coordination on self-assembly of a heteroditopic porphyrin derivative. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s108842462150125x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel heteroditopic porphyrin and its zinc complex with four long aliphatic chains on the same side of the porphyrin ring were synthesized and used for controllable self-assembly. A variety of aggregation morphologies, including nanosheets, nanospheres, films, leaves, trunks, nanorods, and disks, were furnished by using different pyridyl ligands to coordinate with the Zn-porphyrin or selecting different solvents.
Collapse
Affiliation(s)
- Shuping Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xuechun Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ziwei Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Benyue Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yang Ye
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
21
|
Li Y, Wang N, Lei H, Li X, Zheng H, Wang H, Zhang W, Cao R. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Yang F, Liu X, Yang Z. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin-Based Supramolecular Structures. Angew Chem Int Ed Engl 2021; 60:14671-14678. [PMID: 33843119 DOI: 10.1002/anie.202103809] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/31/2022]
Abstract
Herein, we show that chiral metal nanoparticle superlattices can be produced through coassembly of achiral metal nanoparticles and porphyrin-based organic molecules. This chirality transfer from molecules to nanoparticle superstructures across three orders of magnitude in length scale is enabled by the hetero chain-chain van der Waals interactions. As far as we know, these are the first chiral nanoparticle assemblies based on chirality transfer through weak van der Waals forces. The dimensionality of the nanoparticle superlattices (1D chiral chains, 2D chiral sheets (cones), and 3D chiral particles) can be controlled based on a same synthetic chiral porphyrin molecule. Metalation of these porphyrin molecules with zinc cations results in the switching of molecular packing from J-type to H-type, which thereby produces 1D chiral nanoparticle chains. Functionalization of these zinc porphyrins with oleylamine can induce the assembly of nanoparticles into 2D chiral nanoparticle sheets.
Collapse
Affiliation(s)
- Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Xinyong Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
23
|
Yang F, Liu X, Yang Z. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin‐Based Supramolecular Structures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fei Yang
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Xinyong Liu
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
24
|
Moutier F, Schiller J, Calvez G, Lescop C. Self-assembled luminescent Cu( i) tetranuclear metallacycles based on 3,3′-bipyridine ligands. Org Chem Front 2021. [DOI: 10.1039/d1qo00538c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three luminescent tetranuclear macrocycles are obtained selectively, applying coordination-driven supramolecular processes to the reaction of 3,3′-bipyridine ligand with in situ formed Cu(i) bimetallic units bearing a coordination angle of ca. 120°.
Collapse
Affiliation(s)
- Florent Moutier
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Jana Schiller
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Guillaume Calvez
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| | - Christophe Lescop
- Univ Rennes
- INSA Rennes
- CNRS
- ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
| |
Collapse
|