1
|
Zhang Y, Guan X, Meng Z, Jiang HL. Supramolecularly Built Local Electric Field Microenvironment around Cobalt Phthalocyanine in Covalent Organic Frameworks for Enhanced Photocatalysis. J Am Chem Soc 2025; 147:3776-3785. [PMID: 39817693 DOI: 10.1021/jacs.4c16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The local electric field (LEF) plays an important role in the catalytic process; however, the precise construction and manipulation of the electric field microenvironment around the active site remains a significant challenge. Here, we have developed a supramolecular strategy for the implementation of a LEF by introducing the host macrocycle 18-crown-6 (18C6) into a cobalt phthalocyanine (CoPc)-containing covalent organic framework (COF). Utilizing the supramolecular interaction between 18C6 and potassium ion (K+), a locally enhanced K+ concentration around CoPc can be built to generate a LEF microenvironment around the catalytically active Co site. The COF with this supramolecularly built LEF realizes an activity of up to 7.79 mmol mmolCo-1 h-1 in the photocatalytic CO2 reduction reaction (CO2RR), which is a 180% improvement compared to its counterpart without 18C6 units. The effect of LEF can be subtly controlled by fully harnessing the K+@18C6 interaction by changing the potassium salts with different counterions. In situ spectroscopy and density functional theory calculations show that the complexation of K+ by 18C6 creates a positive electric field that stabilizes the critical intermediate *COOH involved in CO2RR, which can be tuned by the halide ion-mediated K+@18C6 interaction and hydrogen-bonding interaction, consequently leading to improved catalytic performance to varying degrees.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xinyu Guan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang 310000, P. R. China
| | - Zheng Meng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Antonopoulou MN, Truong NP, Egger T, Kroeger AA, Coote ML, Anastasaki A. Acid-Enhanced Photoiniferter Polymerization under Visible Light. Angew Chem Int Ed Engl 2024:e202420733. [PMID: 39721056 DOI: 10.1002/anie.202420733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Photoiniferter (PI) is a promising polymerization methodology, often used to overcome restrictions posed by thermal reversible addition-fragmentation chain-transfer (RAFT) polymerization. However, in the overwhelming majority of reports, high energy UV irradiation is required to effectively trigger photolysis of RAFT agents and facilitate the polymerization, significantly limiting its potential, scope, and applicability. Although visible light PI has emerged as a highly attractive alternative, most current approaches are limited to the synthesis of lower molecular weight polymers (i.e. 10,000 g/mol), and typically suffer from prolonged reaction times, extended induction periods, and higher dispersities when high activity CTAs (photoiniferters), such as trithiocarbonates, are employed. Herein, an acid-enhanced PI polymerization is introduced that efficiently operates under visible light irradiation. The presence of small amounts of biocompatible citric acid fully eliminates the lengthy induction period (21 hours) by enhancing photolysis, rapidly consuming the CTA, and accelerating the reaction rate, yielding polymers with narrow molar mass distributions (Ð ~1.1), near-quantitative conversions (>97 %), and high end-group fidelity in just two hours. A particularly noteworthy aspect of this work is the possibility to target very high degrees of polymerization (i.e. DP=3,000) within short timescales (i.e. less than five hours) without compromising the control over the dispersity (Ð ~1.1). The versatility of the technique is further demonstrated through the synthesis of well-defined diblock copolymers and its compatibility to various polymer classes (i.e. acrylamides, acrylates, methacrylates), thus establishing visible-light PI as a robust tool for polymer synthesis.
Collapse
Affiliation(s)
- Maria-Nefeli Antonopoulou
- Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093, Zurich, Switzerland
| | - Nghia P Truong
- Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093, Zurich, Switzerland
| | - Timon Egger
- Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093, Zurich, Switzerland
| | - Asja A Kroeger
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093, Zurich, Switzerland
| |
Collapse
|
3
|
Maitra A, Lake WR, Mohamed A, Edington SC, Das P, Thompson BC, Hammes-Schiffer S, Johnson M, Dawlaty JM. Measuring the Electric Fields of Ions Captured in Crown Ethers. J Phys Chem Lett 2024; 15:7458-7465. [PMID: 39008844 DOI: 10.1021/acs.jpclett.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Controlling reactivity with electric fields is a persistent challenge in chemistry. One approach is to tether ions at well-defined locations near a reactive center. To quantify fields arising from ions, we report crown ethers that capture metal cations as field sources and a covalently bound vibrational Stark shift probe as a field sensor. We use experiments and computations in both the gas and liquid phases to quantify the vibrational frequencies of the probe and estimate the electric fields from the captured ions. Cations, in general, blue shift the probe frequency, with effective fields estimated to vary in the range of ∼0.2-3 V/nm in the liquid phase. Comparison of the gas and liquid phase data provides insight into the effects of mutual polarization of the molecule and solvent and screening of the ion's field. These findings reveal the roles of charge, local screening, and geometry in the design of tailored electric fields.
Collapse
Affiliation(s)
- Anwesha Maitra
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - William R Lake
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ahmed Mohamed
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Sean C Edington
- Department of Molecular, Cellular, and Biomedical Sciences and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Pratyusha Das
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Barry C Thompson
- Department of Chemistry and Loker Hydrocarbon Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mark Johnson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Galembeck F, Santos LP, Burgo TAL, Galembeck A. The emerging chemistry of self-electrified water interfaces. Chem Soc Rev 2024; 53:2578-2602. [PMID: 38305696 DOI: 10.1039/d3cs00763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Water is known for dissipating electrostatic charges, but it is also a universal agent of matter electrification, creating charged domains in any material contacting or containing it. This new role of water was discovered during the current century. It is proven in a fast-growing number of publications reporting direct experimental measurements of excess charge and electric potential. It is indirectly verified by its success in explaining surprising phenomena in chemical synthesis, electric power generation, metastability, and phase transition kinetics. Additionally, electrification by water is opening the way for developing green technologies that are fully compatible with the environment and have great potential to contribute to sustainability. Electrification by water shows that polyphasic matter is a charge mosaic, converging with the Maxwell-Wagner-Sillars effect, which was discovered one century ago but is still often ignored. Electrified sites in a real system are niches showing various local electrochemical potentials for the charged species. Thus, the electrified mosaics display variable chemical reactivity and mass transfer patterns. Water contributes to interfacial electrification from its singular structural, electric, mixing, adsorption, and absorption properties. A long list of previously unexpected consequences of interfacial electrification includes: "on-water" reactions of chemicals dispersed in water that defy current chemical wisdom; reactions in electrified water microdroplets that do not occur in bulk water, transforming the droplets in microreactors; and lowered surface tension of water, modifying wetting, spreading, adhesion, cohesion, and other properties of matter. Asymmetric capacitors charged by moisture and water are now promising alternative equipment for simultaneously producing electric power and green hydrogen, requiring only ambient thermal energy. Changing surface tension by interfacial electrification also modifies phase-change kinetics, eliminating metastability that is the root of catastrophic electric discharges and destructive explosions. It also changes crystal habits, producing needles and dendrites that shorten battery life. These recent findings derive from a single factor, water's ability to electrify matter, touching on the most relevant aspects of chemistry. They create tremendous scientific opportunities to understand the matter better, and a new chemistry based on electrified interfaces is now emerging.
Collapse
Affiliation(s)
- Fernando Galembeck
- Department of Physical Chemistry, University of Campinas, Institute of Chemistry, 13083-872, Campinas, Brazil.
- Galembetech Consultores e Tecnologia, 13080-661, Campinas, Brazil
| | - Leandra P Santos
- Galembetech Consultores e Tecnologia, 13080-661, Campinas, Brazil
| | - Thiago A L Burgo
- Department of Chemistry and Environmental Sciences, São Paulo State University (Unesp), 15054-000, São José do Rio Preto, Brazil
| | - Andre Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco, 50740-560, Recife, Brazil
| |
Collapse
|
5
|
Song Z, Liang C, Gong K, Zhao S, Yuan X, Zhang X, Xie J. Harnessing the High Interfacial Electric Fields on Water Microdroplets to Accelerate Menshutkin Reactions. J Am Chem Soc 2023; 145:26003-26008. [PMID: 38011046 DOI: 10.1021/jacs.3c11650] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Even though it is still an emerging field, the application of a high external electric field (EEF) as a green and efficient catalyst in synthetic chemistry has recently received significant attention for the ability to deliver remarkable control of reaction selectivity and acceleration of reaction rates. Here, we extend the application of the EEF to Menshutkin reactions by taking advantage of the spontaneous high electric field at the air-water interfaces of sprayed water microdroplets. Experimentally, a series of Menshutkin reactions were accelerated by 7 orders of magnitude. Theoretically, both density functional theory calculations and ab initio molecular dynamics simulations predict that the reaction barrier decreases significantly in the presence of oriented external electric fields, thereby supporting the notion that the electric fields in the water droplets are responsible for the catalysis. In addition, the ordered solvent and reactant molecules oriented by the electric field alleviate the steric effect of solvents and increase the successful collision rates, thus facilitating faster nucleophilic attack. The success of Menshutkin reactions in this study showcases the great potential of microdroplet chemistry for green synthesis.
Collapse
Affiliation(s)
- Zhexuan Song
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chiyu Liang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Ke Gong
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Supin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Zhu C, Pham LN, Yuan X, Ouyang H, Coote ML, Zhang X. High Electric Fields on Water Microdroplets Catalyze Spontaneous and Fast Reactions in Halogen-Bond Complexes. J Am Chem Soc 2023; 145:21207-21212. [PMID: 37724917 DOI: 10.1021/jacs.3c08818] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The use of external electric fields as green and efficient catalysts in synthetic chemistry has recently received significant attention for their ability to deliver remarkable control of reaction selectivity and acceleration of reaction rates. Technically, methods of generating high electric fields in the range of 1-10 V/nm are limited, as in-vacuo techniques have obvious scalability issues. The spontaneous high fields at various interfaces promise to solve this problem. In this study, we take advantage of the spontaneous high electric field at the air-water interface of sprayed water microdroplets in the reactions of several halogen bond systems: Nu:--X-X, where Nu: is pyridine or quinuclidine and X is bromine or iodine. The field facilitates ultrafast electron transfer from Nu:, yielding a Nu-X covalent bond and causing the X-X bond to cleave. This reaction occurs in microseconds in microdroplets but takes days to weeks in bulk solution. Density functional theory calculations predict that the reaction becomes barrier-free in the presence of oriented external electric fields, supporting the notion that the electric fields in the water droplets are responsible for the catalysis. We anticipate that microdroplet chemistry will be an avenue rich in opportunities in the reactions facilitated by high electric fields and provides an alternative way to tackle the scalability problem.
Collapse
Affiliation(s)
- Chenghui Zhu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Le Nhan Pham
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Haoran Ouyang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
7
|
Shiels OJ, Marlton SJP, Trevitt AJ. Protonation Isomer Specific Ion-Molecule Radical Reactions. J Am Chem Soc 2023. [PMID: 37339086 DOI: 10.1021/jacs.3c02552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Through a combination of ion-mobility filtering and laser-equipped quadrupole ion-trap mass spectrometry, the gas-phase reaction kinetics of two protonation isomers of the distonic-radical quinazoline cation are independently measured with ethylene. For these radical addition reactions, protonation site variations drive significant changes in nearby radical reactivity, and this is primarily due to through-space electrostatic effects. Furthermore, quantum chemical methods specifically designed for calculating long-range interactions, such as double-hybrid density functional theory, are required to rationalize the experimentally measured difference in reactivity.
Collapse
Affiliation(s)
- Oisin J Shiels
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong 2522, New South Wales, Australia
| | - Samuel J P Marlton
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong 2522, New South Wales, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong 2522, New South Wales, Australia
| |
Collapse
|
8
|
Santos LP, Lermen D, Yoshimura RG, da Silva BL, Galembeck A, Burgo TAL, Galembeck F. Water Reactivity in Electrified Interfaces: The Simultaneous Production of Electricity, Hydrogen, and Hydrogen Peroxide at Room Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5840-5850. [PMID: 37053576 DOI: 10.1021/acs.langmuir.3c00186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hygroelectric cells deliver hydrogen, hydrogen peroxide, and electric current simultaneously at room temperature from liquid water or vapor. Different cell arrangements allowed the electrical measurements and the detection and measurement of the reaction products by two methods each. Thermodynamic analysis shows that water dehydrogenation is a non-spontaneous reaction under standard conditions, but it can occur within an open, non-electroneutral system, thus supporting the experimental results. That is a new example of chemical reactivity modification in charged interfaces, analogous to the hydrogen peroxide formation in charged aqueous aerosol droplets. Extension of the experimental methods and the thermodynamic analysis used in this work may allow the prediction of interesting new chemical reactions that are otherwise unexpected. On the other hand, this adds a new facet to the complex behavior of interfaces. Hygroelectric cells shown in this work are built from commodity materials, using standard laboratory or industrial processes that are easily scaled up. Thus, hygroelectricity may eventually become a source of energy and valuable chemicals.
Collapse
Affiliation(s)
- Leandra P Santos
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-650, Brazil
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| | - Diana Lermen
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| | - Rafael Galiza Yoshimura
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-650, Brazil
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| | | | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife 50740-560, Brazil
| | - Thiago A L Burgo
- Department of Chemistry and Environmental Sciences, Ibilce, São Paulo State University (Unesp), São José do Rio Preto 15054-000, Brazil
| | - Fernando Galembeck
- Galembetech Consultores e Tecnologia Ltda., Campinas 13080-650, Brazil
- University of Campinas, Institute of Chemistry, P.O. Box 6154, Campinas 13083-970, Brazil
| |
Collapse
|
9
|
Sun Y, Jing X, Liu Y, Yu B, Hu H, Cong H, Shen Y. A chitosan derivative-crosslinked hydrogel with controllable release of polydeoxyribonucleotides for wound treatment. Carbohydr Polym 2022; 300:120298. [DOI: 10.1016/j.carbpol.2022.120298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
10
|
Wang E, Wen H, Guo P, Luo Y, Wang C, He Z, Pan J, Chen X, Cao B, Wang Y, Huang S, Xue W. Fabrication of methacrylated casein/alginate microspheres crosslinked by UV light coupled with Ca2+ chelation for pH-sensitive drug delivery. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-021-04917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wang JYJ, Blyth MT, Sherburn MS, Coote ML. Tuning Photoenolization-Driven Cycloadditions Using Theory and Spectroscopy. J Am Chem Soc 2022; 144:1023-1033. [PMID: 34991316 DOI: 10.1021/jacs.1c12174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first broad spectrum investigation into the photoenolization/Diels-Alder (PEDA) sequence was carried out using M06-2X/6-31+G(d,p) in conjunction with SMD solvation and supported by experimental UV-vis spectroscopy. A test set of 20 prodienes was chosen to examine the role of the H atom acceptor group (substituted and unsubstituted carbonyl, thiocarbonyl, and imine), the H atom donor group, and bystander ring substituents. As reaction partners for the photogenerated dienes, a diverse test set of 20 dienophiles was examined, comprising electron rich, electron poor, neutral, strain activated, hydrocarbon, and heteroatom-containing molecules including CO2 and CO. A key finding of this work is the demonstration that the PEDA sequence of carbonyl based prodienes is tolerant of most substitution patterns. Another is that thiocarbonyl derivatives should behave analogously to the carbonyls but are likely to do so much more slowly, due to an inefficient intersystem crossing, an endothermic 1,5-hydrogen atom transfer (HAT) step, and a [1,5] sigmatropic H shift to regenerate the starting material that outcompetes the [4 + 2]cycloaddition. In contrast, the T1 state of the ortho-alkyl imines displays the incorrect orbital symmetry for 1,5-HAT and is correspondingly accompanied by higher barriers, even in the excited state. However, provided these barriers can be overcome, the remaining steps in the PEDA sequence are predicted to be facile. The Diels-Alder reaction is predicted to be of much broader scope than reported synthetic literature: while electron poor dienophiles are expected to be the most reactive partners, ethylene and electron rich alkenes should react at a synthetically useful rate. CO is predicted to undergo a facile (4 + 1)cheletropic addition instead of the normal [4 + 2]cycloaddition pathway. This unique photoenolization/cheletropic addition (PECA) sequence could provide metal-free access to benzannelated cyclopentanones.
Collapse
Affiliation(s)
- Jiao Yu J Wang
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Mitchell T Blyth
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michael S Sherburn
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
12
|
Wong NGK, Dessent CEH. Illuminating the Effect of the Local Environment on the Performance of Organic Sunscreens: Insights From Laser Spectroscopy of Isolated Molecules and Complexes. Front Chem 2022; 9:812098. [PMID: 35096773 PMCID: PMC8789676 DOI: 10.3389/fchem.2021.812098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Sunscreens are essential for protecting the skin from UV radiation, but significant questions remain about the fundamental molecular-level processes by which they operate. In this mini review, we provide an overview of recent advanced laser spectroscopic studies that have probed how the local, chemical environment of an organic sunscreen affects its performance. We highlight experiments where UV laser spectroscopy has been performed on isolated gas-phase sunscreen molecules and complexes. These experiments reveal how pH, alkali metal cation binding, and solvation perturb the geometric and hence electronic structures of sunscreen molecules, and hence their non-radiative decay pathways. A better understanding of how these interactions impact on the performance of individual sunscreens will inform the rational design of future sunscreens and their optimum formulations.
Collapse
Affiliation(s)
- Natalie G K Wong
- Department of Chemistry, University of York, York, United Kingdom
| | | |
Collapse
|
13
|
Balaban B, Kariksiz N, Eren TN, Avci D. Cyclopolymerizable and cyclopolymeric photoinitiators from diallyl amine and α-hydroxy ketones. Polym Chem 2022. [DOI: 10.1039/d2py00688j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel cyclopolymerizable and one cyclopolymeric (first in the literature) PIs with high reactivity, controllable water solubility, migration stability and high thermal stability were synthesized by attachment of diallyl amine to I2959 or I184.
Collapse
Affiliation(s)
- Burcu Balaban
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| | - Neslihan Kariksiz
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| | - Tugce Nur Eren
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| | - Duygu Avci
- Department of Chemistry, Bogazici University, 34342 Bebek, Istanbul, Turkey
| |
Collapse
|
14
|
Abstract
Photochemical reactions are increasingly being used for chemical and materials synthesis, for example, in photoredox catalysis, and generally involve photoexcitation of molecular chromophores dissolved in a liquid solvent. The choice of solvent influences the outcomes of the photochemistry because solute-solvent interactions modify the energies of and crossings between electronic states of the chromophores, and they affect the evolving structures of the photoexcited molecules. Ultrafast laser spectroscopy methods with femtosecond to picosecond time resolution can resolve the dynamics of these photoexcited molecules as they undergo structural and electronic changes, relax back to the ground state, dissipate their excess internal energy to the surrounding solvent, or undergo photochemical reactions. In this Account, we illustrate how experimental studies using ultrafast lasers can reveal the influences that different solvents or cosolutes exert on the photoinduced nonadiabatic dynamics of internal conversion and intersystem crossing in nonradiative relaxation pathways. Although the environment surrounding a solute molecule is rapidly changing, with fluctuations in the coordination to neighboring solvent molecules occurring on femtosecond or picosecond time scales, we show that it is possible to photoexcite selectively only those molecular chromophores transiently experiencing specific solute-solvent interactions such as intermolecular hydrogen bonding.The effects of different solvation environments on the photodynamics are illustrated using four selected examples of photochemical processes in which the solvent has a marked effect on the outcomes. We first consider two aromatic carbonyl compounds, benzophenone and acetophenone, which are known to undergo fast intersystem crossing to populate the first excited triplet state on time scales of a few picoseconds. We show that the nonadiabatic excited-state dynamics are modified by transient hydrogen bonding of the carbonyl group to a protic solvent or by coordination to a metal cation cosolute. We then examine how different solvents modify the competition between two alternative relaxation pathways in a photoexcited UVA-sunscreen molecule, diethylamino hydroxybenzoyl hexyl benzoate (DHHB). This relaxation back to the ground electronic state is an essential part of the effective operation of the sunscreen compound, but the dynamics are sensitive to the surrounding environment. Finally, we consider how solvents of different polarity affect the energies and lifetimes of excited states with locally excited or charge-transfer character in heterocyclic organic compounds used as excited-state electron donors for photoredox catalysis. With these and other examples, we seek to develop a molecular level understanding of how the choice of solution environment might be used to control the outcomes of photochemical reactions.
Collapse
Affiliation(s)
- Ravi Kumar Venkatraman
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Andrew J. Orr-Ewing
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
15
|
Marlton SJP, McKinnon BI, Greißel P, Shiels OJ, Ucur B, Trevitt AJ. Picosecond excited-state lifetimes of protonated indazole and benzimidazole: The role of the N-N bond. J Chem Phys 2021; 155:184302. [PMID: 34773941 DOI: 10.1063/5.0071847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Certain chemical groups give rise to characteristic excited-state deactivation mechanisms. Here, we target the role of a protonated N-N chemical group in the excited-state deactivation of protonated indazole by comparison to its isomer that lacks this group, protonated benzimidazole. Gas-phase protonated indazole and protonated benzimidazole ions are investigated at room temperature using picosecond laser pump-probe photodissociation experiments in a linear ion-trap. Excited state lifetimes are measured across a range of pump energies (4.0-5.4 eV). The 1ππ* lifetimes of protonated indazole range from 390 ± 70 ps using 4.0 eV pump energy to ≤18 ps using 4.6 eV pump energy. The 1ππ* lifetimes of protonated benzimidazole are systematically longer, ranging from 3700 ± 1100 ps at 4.6 eV pump energy to 400 ± 200 ps at 5.4 eV. Based on these experimental results and accompanying quantum chemical calculations and potential energy surfaces, the shorter lifetimes of protonated indazole are attributed to πσ* state mediated elongation of the protonated N-N bond.
Collapse
Affiliation(s)
- Samuel J P Marlton
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Benjamin I McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Phillip Greißel
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Oisin J Shiels
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Boris Ucur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
16
|
Pei Z, Qiao Q, Gong C, Wei D, Coote ML. Electrostatic effects in N-heterocyclic carbene catalysis: revealing the nature of catalysed decarboxylation. Phys Chem Chem Phys 2021; 23:24627-24633. [PMID: 34719698 DOI: 10.1039/d1cp04444c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemistry is used to investigate the nature of protonated N-heterocyclic carbene (NHC·H+) catalysed decarboxylation recently reported by Zhang et al. (ACS Catal., 2021, 11, 3443-3454). Our results show that there are strong electrostatic effects within the NHC·H+ catalysed decarboxylation, and these dominate hydrogen bonding. At the same time, energy decomposition analyses and comparison between the original NHC·H+ catalyst and a truncated form reveal that stabilizing dispersion interactions are also critical, as is induction. We also show that the electrostatic effects and their associated catalytic effects can be further enhanced using charged functional groups.
Collapse
Affiliation(s)
- Zhipeng Pei
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Qinyu Qiao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Cunxi Gong
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Donghui Wei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
17
|
Xu X, Yan S, Hou X, Song W, Wang L, Wu T, Qi M, Wu J, Rao Y, Wang B, Liu L. Local Electric Field Modulated Reactivity of Pseudomonas aeruginosa Acid Phosphatase for Enhancing Phosphorylation of l-Ascorbic Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 360015, P. R. China
| | - Xiaodong Hou
- State Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Tianfu Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengya Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- State Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 360015, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
18
|
Robertson PA, Bishop HM, Orr-Ewing AJ. Tuning the Excited-State Dynamics of Acetophenone Using Metal Ions in Solution. J Phys Chem Lett 2021; 12:5473-5478. [PMID: 34085833 DOI: 10.1021/acs.jpclett.1c01466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The effects of dissolved metal salts on the excited-state dynamics of acetophenone in solution have been explored by using ultrafast transient absorption spectroscopy at two UV excitation wavelengths. In the absence of metal ions, the S1(nπ*) transition of acetophenone is excited at 320 nm, with intersystem crossing (ISC) occurring with a time constant τISC = 5.95 ± 0.47 ps in acetonitrile solution. Excitation at 280 nm accesses the S2(ππ*) state, which internally converts (<0.2 ps) to S1 before undergoing ISC with τISC = 4.36 ± 0.14 ps. Coordination to Mg2+ ions makes the S2 state accessible to excitation at 320 nm, with the rate of S2 → S1 internal conversion reducing 3-fold but the ISC rate increasing. These changes to the excited-state energies and dynamics of this model photosensitizer indicate that dissolved metal salts could modify the photochemistry of synthetically useful homogeneous photocatalytic systems.
Collapse
Affiliation(s)
- Patrick A Robertson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Hannah M Bishop
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
19
|
Marshall DL, Menzel JP, McKinnon BI, Blinco JP, Trevitt AJ, Barner-Kowollik C, Blanksby SJ. Laser Photodissociation Action Spectroscopy for the Wavelength-Dependent Evaluation of Photoligation Reactions. Anal Chem 2021; 93:8091-8098. [PMID: 34019383 DOI: 10.1021/acs.analchem.1c01584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nitrile imine-mediated tetrazole-ene cycloaddition is a widely used class of photoligation. Optimizing the reaction outcome requires detailed knowledge of the tetrazole photoactivation profile, which can only partially be ascertained from absorption spectroscopy, or otherwise involves laborious reaction monitoring in solution. Photodissociation action spectroscopy (PDAS) combines the advantages of optical spectroscopy and mass spectrometry in that only absorption events resulting in a mass change are recorded, thus revealing the desired wavelength dependence of product formation. Moreover, the sensitivity and selectivity afforded by the mass spectrometer enable reliable assessment of the photodissociation profile even on small amounts of crude material, thus accelerating the design and synthesis of next-generation substrates. Using this workflow, we demonstrate that the photodissociation onset for nitrile imine formation is red-shifted by ca. 50 nm with a novel N-ethylcarbazole derivative relative to a phenyl-substituted archetype. Benchmarked against solution-phase tunable laser experiments and supported by quantum chemical calculations, these discoveries demonstrate that PDAS is a powerful tool for rapidly screening the efficacy of new substrates in the quest toward efficient visible light-triggered ligation for biological applications.
Collapse
Affiliation(s)
- David L Marshall
- Central Analytical Research Facility, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Jan P Menzel
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Benjamin I McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - James P Blinco
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|