1
|
Yao QJ, Huang FR, Chen JH, Shi BF. Nickel(II)/BINOL-catalyzed enantioselective C-H activation via desymmetrization and kinetic resolution. Nat Commun 2024; 15:7135. [PMID: 39164290 PMCID: PMC11336223 DOI: 10.1038/s41467-024-51409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
The field of nickel catalysis has witnessed remarkable growth in recent years. However, the use of nickel catalysts in enantioselective C-H activation remains a daunting challenge because of their variable oxidation states, intricate coordination chemistry, and unpredictable reactivity patterns. Herein, we report an enantioselective C-H activation reaction catalyzed by commercially available and air-stable nickel(II) catalyst. Readily available and simple (S)-BINOL is used as a chiral ligand. This operationally simple protocol enables the synthesis of planar chiral metallocenes in high yields with excellent enantioselectivity through desymmetrization and kinetic resolution. Air-stable planar chiral nickelacycle intermediates are first synthesized via enantioselective C-H nickelation and shown to be possible intermediates of the reaction. Deuterium-labeling studies, alongside the characterization and transformation of chiral nickel(II) species, suggest that C-H cleavage is the enantio-determining step. Moreover, the large-scale synthesis and diverse synthetic transformations underscore the practicality of this protocol.
Collapse
Affiliation(s)
- Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
2
|
Xue Z, Zhang N, Shi L, Luo G. Origins of Ligand-Controlled Stereoselective Polymerization of ortho-Methoxystyrene by Rare-Earth Catalysts: A Theoretical Perspective. Inorg Chem 2024; 63:9195-9203. [PMID: 38722730 DOI: 10.1021/acs.inorgchem.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The stereoselective polymerization of polar vinyl monomers has recently received much attention due to their excellent physicochemical properties. Over the past decade, breakthroughs have been achieved in this field by rare-earth catalysts. However, the mechanistic origins of those stereoselective polymerizations still remain unclear. Herein, stereoselective polymerization of ortho-methoxystyrene (oMOS) by several representative rare-earth catalysts bearing different ligands (i.e., η5-C5Me5, pyridinyl-methylene-fluorenyl, quinolyl-anilido, β-diketiminato) were systematically investigated by density functional theory (DFT) calculations. After achieving agreement between the calculations and experiments, we focused on discussing the role of ligands in controlling stereoselectivity. Our results reveal that the stereoregularity of oMOS polymerization is mainly controlled by the steric effect of the catalyst-monomer structures. Specifically, the type of ligand influences the orientation and configuration of the inserting monomer, thereby affecting the tacticity of the polymers. In the cases of η5-C5Me5-, pyridinyl-methylene-fluorenyl, and quinolyl-anilido-ligated yttrium catalysts, we observe consistent insertion directions and alternating insertion sides of oMOS monomers, leading to syndiotactic selectivity. The opposite insertion directions and the alternating insertion sides of oMOS monomers were observed in the case of the β-diketiminato yttrium catalyst, leading to isotactic selectivity. These findings reported here offer valuable insights into the role of ligands in controlling stereoselectivity in rare-earth catalyzed coordination polymerization of polar vinyl monomers, thus providing guidance for the rational design of new ligands for stereospecific polymerization of polar monomers in the future.
Collapse
Affiliation(s)
- Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
3
|
Shi L, Zhang N, Xue Z, Luo G. Mechanistic Insights into Rare-Earth-Catalyzed Alternating Copolymerization through C-H Polyaddition of Functionalized Organic Compounds to Unconjugated Dienes. Inorg Chem 2024; 63:8079-8091. [PMID: 38663005 DOI: 10.1021/acs.inorgchem.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Density functional theory (DFT) calculations have been conducted to elucidate the detailed mechanisms of yttrium-catalyzed C-H polyaddition of 1,4-dimethoxybenzene (DMB) to 1,4-divinylbenzene (DVB). It was computationally determined that DMB not only serves as a substrate but also performs a crucial role as a ligand, stabilizing the catalytically active species and promoting alkene insertion. Side pathways involving Cβ-H activation and C═C continuous insertion were excluded due to steric and electronic factors, respectively, explaining why the reaction occurred efficiently and selectively to give perfectly alternating DMB-DVB polymers. Interestingly, the theoretical prediction of the reactivity of N,N-dimethyl-1,4-phenylenediamine and 2,2'-biethyl-4,4'-bipyridine reveals significant differences in the coordination effects of these substrates, leading to distinct mechanisms, primarily influenced by their steric effects. These findings shed new light on the previously overlooked role of substrate ligand effects in rare-earth-catalyzed step-growth copolymerization reactions.
Collapse
Affiliation(s)
- Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
4
|
Cong X, Hao N, Mishra A, Zhuo Q, An K, Nishiura M, Hou Z. Regio- and Diastereoselective Annulation of α,β-Unsaturated Aldimines with Alkenes via Allylic C(sp 3)-H Activation by Rare-Earth Catalysts. J Am Chem Soc 2024; 146:10187-10198. [PMID: 38545960 DOI: 10.1021/jacs.4c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The [3 + 2] or [4 + 2] annulation of α,β-unsaturated aldimines with alkenes via β'- or γ-allylic C(sp3)-H activation is, in principle, an atom-efficient route for the synthesis of five- or six-membered-ring cycloalkylamines, which are important structural motifs in numerous natural products, bioactive molecules, and pharmaceuticals. However, such a transformation has remained undeveloped to date probably due to the lack of suitable catalysts. We report herein for the first time the regio- and diastereoselective [3 + 2] and [4 + 2] annulations of α,β-unsaturated imines with alkenes via allylic C(sp3)-H activation by half-sandwich rare-earth catalysts having different metal ion sizes. The reaction of α-methyl-substituted α,β-unsaturated aldimines with alkenes by a C5Me4SiMe3-ligated scandium catalyst took place in a trans-diastereoselective [3 + 2] annulation fashion via C(sp3)-H activation at the α-methyl group (β'-position), exclusively affording alkylidene-functionalized cyclopentylamines with excellent trans-diastereoselectivity. In contrast, the reaction of β-methyl-substituted α,β-unsaturated aldimines with alkenes by a C5Me5-ligated cerium catalyst proceeded in a cis-diastereoselective [4 + 2] annulation fashion via γ-allylic C(sp3)-H activation, selectively yielding multisubstituted 2-cyclohexenylamines with excellent cis-diastereoselectivity. The mechanistic details of these transformations have been elucidated by deuterium-labeling experiments, kinetic isotope effect studies, and the isolation and transformations of key reaction intermediates. This work offers an efficient and selective protocol for the synthesis of a new family of cycloalkylamine derivatives, featuring 100% atom efficiency, high regio- and diastereoselectivity, broad substrate scope, and an unprecedented reaction mechanism.
Collapse
Affiliation(s)
- Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Na Hao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kun An
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Cong X, Zhuo Q, Hao N, Mishra A, Nishiura M, Hou Z. Divergent Synthesis of Multi-Substituted Aminotetralins via [4+2] Annulation of Aldimines with Alkenes by Rare-Earth-Catalyzed Benzylic C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2024; 63:e202318203. [PMID: 38226440 DOI: 10.1002/anie.202318203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The search for efficient and selective methods for the divergent synthesis of multi-substituted aminotetralins is of much interest and importance. We report herein for the first time the diastereoselective [4+2] annulation of 2-methyl aromatic aldimines with alkenes via benzylic C(sp3 )-H activation by half-sandwich rare-earth catalysts, which constitutes an efficient route for the divergent synthesis of both trans and cis diastereoisomers of multi-substituted 1-aminotetralin derivatives from readily accessible aldimines and alkenes. The use of a scandium catalyst bearing a sterically demanding cyclopentadienyl ligand such as C5 Me4 SiMe3 or C5 Me5 exclusively afforded the trans-selective annulation products in the reaction of aldimines with styrenes and aliphatic alkenes. In contrast, the analogous yttrium catalyst, whose metal ion size is larger than that of scandium, yielded the cis-selective annulation products. This protocol features 100 % atom-efficiency, excellent diastereoselectivity, broad substrate scope, and good functional group compatibility. The reaction mechanisms have been elucidated by kinetic isotope effect (KIE) experiments and the isolation and transformations of some key reaction intermediates.
Collapse
Affiliation(s)
- Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Na Hao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Zhang N, Xue Z, Shi L, Luo G. Unveiling the Detailed Mechanism and Origins of Chemo-, Regio-, and Stereoselectivity of Rare-Earth Catalyzed Alternating Copolymerization of Polar and Nonpolar Olefins. Inorg Chem 2024; 63:3544-3559. [PMID: 38308632 DOI: 10.1021/acs.inorgchem.3c04428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
The direct copolymerization of polar and nonpolar olefins is of great interest and significance, as it is the most atom-economical and straightforward strategy for the synthesis of functional polyolefin materials. Despite considerable efforts, the precise control of monomer-sequence and their regio- and stereochemistry is full of challenges, and the related mechanistic origins are still in their infancy to date. Herein, the mechanistic studies on the model reaction of Sc-catalyzed co-syndiospecific alternating copolymerization of anisylpropylene (AP) and styrene were performed by DFT calculations. The results suggest that the subtle balance between electronic and steric factors plays an important role during monomer insertions, and a new amino-dissociated mechanism was proposed for AP insertion at chain initiation. AP insertion follows the 2,1-si-insertion pattern, which is mainly controlled by steric factors caused by the restricted MeO···Sc interaction. As for styrene insertion, it prefers the 2,1-re-insertion manner and its regio- and stereoselectivities are influenced by steric repulsions between the inserting styrene and the polymer chain or the ligand. More interestingly, it is found that the alternating monomer-sequence is mainly determined by the "steric matching" principle, which is quantitatively expressed by the buried volume of the metal center of the preinserted species. The concept of steric pocket has been successfully applied to explain the different performances of several catalysts and other alternating copolymerization reactions. The insightful mechanistic findings and the quantitative steric pocket model present here are expected to promote rational design of new rare-earth catalysts for developing regio-, stereo-, and sequence-controlled copolymerization of specific polar and nonpolar olefins.
Collapse
Affiliation(s)
- Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
7
|
Lv X, Wang M, Zhao Y, Shi Z. P(III)-Directed Asymmetric C-H Arylation toward Planar Chiral Ferrocenes by Palladium Catalysis. J Am Chem Soc 2024; 146:3483-3491. [PMID: 38266486 DOI: 10.1021/jacs.3c13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Planar chiral ferrocenyl phosphines have been employed as highly valuable ligands in metal-catalyzed asymmetric reactions. However, their preparation remains a formidable challenge due to the requirement for intricate, multistep synthetic sequences. In addressing this issue, we have developed a groundbreaking enantioselective C-H activation strategy facilitated by P(III) directing groups, enabling the efficient construction of planar chiral ferrocenyl phosphines in a single step. Our innovative approach entails the combination of a palladium catalyst, a parent ferrocenyl phosphine, and a chiral phosphoramidite ligand, leading to exceptional reactivity and enantioselectivity. Remarkably, these novel ligands exhibit remarkable efficacy in silver-catalyzed asymmetric 1,3-dipolar cycloadditions. We carried out a combination of experimental and computational studies to obtain a more comprehensive understanding of the reaction pathway and the factors contributing to enantioselectivity.
Collapse
Affiliation(s)
- Xueli Lv
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Liu CX, Zhao F, Gu Q, You SL. Enantioselective Rh(I)-Catalyzed C-H Arylation of Ferroceneformaldehydes. ACS CENTRAL SCIENCE 2023; 9:2036-2043. [PMID: 38033798 PMCID: PMC10683487 DOI: 10.1021/acscentsci.3c00748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 12/02/2023]
Abstract
As an important class of platform molecules, planar chiral ferrocene carbonyl compounds could be transformed into various functional groups offering facile synthesis of chiral ligands and catalysts. However, developing efficient and straightforward methods for accessing enantiopure planar chiral ferrocene carbonyl compounds, especially ferroceneformaldehydes, remains highly challenging. Herein, we report a rhodium(I)/phosphoramidite-catalyzed enantioselective C-H bond arylation of ferroceneformaldehydes. Readily available aryl halides such as aryl iodides, aryl bromides, and even aryl chlorides are suitable coupling partners in this transformation, leading to a series of planar chiral ferroceneformaldehydes in good yields and excellent enantioselectivity (up to 83% yield and >99% ee). The aldehyde group could be transformed into diverse functional groups smoothly, and enantiopure Ugi's amine and PPFA analogues could be synthesized efficiently. The latter was found to be a highly efficient ligand in Pd-catalyzed asymmetric allylic alkylation reactions. Mechanistic experiments supported the formation of imine intermediates as the key step during the reaction.
Collapse
Affiliation(s)
| | | | - Qing Gu
- New Cornerstone Science Laboratory,
State Key Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Shu-Li You
- New Cornerstone Science Laboratory,
State Key Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| |
Collapse
|
9
|
Zheng H, Liu C, Wang X, Liu Y, Chen B, Hu Y, Chen Q. Catalytic Undirected Meta-Selective C-H Borylation of Metallocenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304672. [PMID: 37632714 PMCID: PMC10625117 DOI: 10.1002/advs.202304672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 08/28/2023]
Abstract
Metallocenes are privileged backbones in the fields of synthetic chemistry, catalysis, polymer science, etc. Direct C-H functionalization is undoubtedly the simplest approach for tuning the properties of metallocenes. However, owing to the presence of multiple identical C(sp2 )-H sites, this protocol often suffers from low reactivity and selectivity issues, especially for the regioselective synthesis of 1,3-difunctionalized metallocenes. Herein, an efficient iridium-catalyzed meta-selective C-H borylation of metallocenes is reported. With no need of preinstalled directing groups, this approach enables a rapid synthesis of various boronic esters based on benzoferrocenes, ferrocenes, ruthenocene, and related half sandwich complex. A broad range of electron-deficient and -rich functional groups are all compatible with the process. Notably, C-H borylation of benzoferrocenes takes place exclusively at the benzene ring, which is likely ascribed to the shielding effect of pentamethylcyclopentadiene. The synthetic utility is further demonstrated by easy scalability to gram quantities, the conversion of boron to heteroatoms including N3 , SePh, and OAc, as well as diverse cross-coupling reactions.
Collapse
Affiliation(s)
- Hao Zheng
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chang‐Hui Liu
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiao‐Yu Wang
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yan Liu
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Bing‐Zhi Chen
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- School of Chemical Engineering and TechnologyChina University of Mining and TechnologyXuzhouJiangsu221116P. R. China
| | - Qing‐An Chen
- Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
10
|
Li F, Luo Y, Ren J, Yuan Q, Yan D, Zhang W. Iridium-Catalyzed Remote Site-Switchable Hydroarylation of Alkenes Controlled by Ligands. Angew Chem Int Ed Engl 2023; 62:e202309859. [PMID: 37610735 DOI: 10.1002/anie.202309859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
An iridium-catalyzed remote site-switchable hydroarylation of alkenes was reported, delivering the products functionalized at the subterminal methylene and terminal methyl positions on an alkyl chain controlled by two different ligands, respectively, in good yields and with good to excellent site-selectivities. The catalytic system showed good functional group tolerance and a broad substrate scope, including unactivated and activated alkenes. More importantly, the regioconvergent transformations of mixtures of isomeric alkenes were also successfully realized. The results of the mechanistic studies demonstrate that the reaction undergoes a chain-walking process to give an [Ar-Ir-H] complex of terminal alkene. The subsequent processes proceed through the modified Chalk-Harrod-type mechanism via the migratory insertion of terminal alkene into the Ir-C bond followed by C-H reductive elimination to afford the hydrofunctionalization products site-selectively.
Collapse
Affiliation(s)
- Fei Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jinbao Ren
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qianjia Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Deyue Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
11
|
Lin X, An K, Zhuo Q, Nishiura M, Cong X, Hou Z. Diastereo- and Enantioselective Hydrophosphination of Cyclopropenes under Lanthanocene Catalysis. Angew Chem Int Ed Engl 2023; 62:e202308488. [PMID: 37405669 DOI: 10.1002/anie.202308488] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
The asymmetric hydrophosphination of cyclopropenes with phosphines is of much interest and importance, but has remained hardly explored to date probably because of the lack of suitable catalysts. We report here the diastereo- and enantioselective hydrophosphination of 3,3-disubstituted cyclopropenes with phosphines by a chiral lanthanocene catalyst bearing the C2 -symmetric 5,6-dioxy-4,7-trans-dialkyl-substituted tetrahydroindenyl ligands. This protocol offers a selective and efficient route for the synthesis of a new family of chiral phosphinocyclopropane derivatives, featuring 100 % atom efficiency, good diastereo- and enantioselectivity, broad substrate scope, and no need for a directing group.
Collapse
Affiliation(s)
- Xiaobin Lin
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kun An
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
12
|
Ullah S, Jensen S, Liu Y, Tan K, Drake H, Zhang G, Huang J, Klimeš J, Driscoll DM, Hermann RP, Zhou HC, Li J, Thonhauser T. Magnetically Induced Binary Ferrocene with Oxidized Iron. J Am Chem Soc 2023; 145:18029-18035. [PMID: 37530761 DOI: 10.1021/jacs.3c05754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Ferrocene is perhaps the most popular and well-studied organometallic molecule, but our understanding of its structure and electronic properties has not changed for more than 70 years. In particular, all previous attempts of chemically oxidizing pure ferrocene by binding directly to the iron center have been unsuccessful, and no significant change in structure or magnetism has been reported. Using a metal organic framework host material, we were able to fundamentally change the electronic and magnetic structure of ferrocene to take on a never-before observed physically stretched/bent high-spin Fe(II) state, which readily accepts O2 from air, chemically oxidizing the iron from Fe(II) to Fe(III). We also show that the binding of oxygen is reversible through temperature swing experiments. Our analysis is based on combining Mößbauer spectroscopy, extended X-ray absorption fine structure, in situ infrared, SQUID, thermal gravimetric analysis, and energy dispersive X-ray fluorescence spectroscopy measurements with ab initio modeling.
Collapse
Affiliation(s)
- Saif Ullah
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Stephanie Jensen
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Yanyao Liu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kui Tan
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Hannah Drake
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Guoyu Zhang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Junjie Huang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jiří Klimeš
- Department of Chemical Physics and Optics, Charles University, 12116 Prague, Czech Republic
| | - Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Raphaël P Hermann
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| |
Collapse
|
13
|
Guo D, Rajeshkumar T, Zhu S, Yuan Q, Hong D, Zhou S, Zhu X, Maron L, Wang S. Aryl C-H bond functionalization with diphenyldiazomethane induced by rare-earth metal alkyl complexes. Dalton Trans 2023; 52:11315-11324. [PMID: 37530174 DOI: 10.1039/d3dt01714a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The first examples of regioselective aryl ortho-C-H functionalization with diphenyldiazomethane for the construction of Caryl-Nhydrazinato bonds were accomplished via the activation of C-H bonds and the subsequent reaction of diphenyldiazomethane with the RE-Caryl bond. The reactions of rare-earth metal monoalkyl complexes LRE(CH2SiMe3)(THF)2 (L = 2,5-[(2-pyrrolyl)CPh2]2(N-Me-pyrrole)) supported by a neutral N-methylpyrrole anchored dipyrrolyl ligand with 2 equiv. of Ph2CN2 gave irreversibly unprecedented hydrazonato-functionalized imino rare-earth metal complexes LRE(Ph2CNNC6H4-(o-CNHPh) (RE = Y (2a), Lu (2a')) in good yields involving a rather complex process including the interaction of a diazo unit with a RE-Calkyl bond, a β-H elimination, a N-N cleavage, 1,4-hydrogen transfer and the subsequent C-N coupling with another diphenyldiazomethane. More important is that regioselective aryl C-H bond functionalization with diphenyldiazomethane to construct the Caryl-Nhydrazinato bonds can be easily achieved by three-component reactions of rare-earth metal monoalkyl complexes, a wide range of substituted imines (including aldimines, ketimines or analogous 2-phenylpyridine) and diphenyldiazomethane, affording various hydrazonato-functionalized phenyl, thienyl imino or pyridyl rare-earth metal complexes 2b-2j at room temperature. A further study indicated that the substituents on the phenyl ring have a great effect on the reaction pathway and governed the Caryl-Nhydrazinato bond construction. Moreover, the experimental studies show that the formation of the Caryl-Nhydrazinato bonds is thermodynamically facile, which could be realized at room temperature easily.
Collapse
Affiliation(s)
- Dianjun Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Shan Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Dongjing Hong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Xiancui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
14
|
Mishra A, Cong X, Nishiura M, Hou Z. Enantioselective Synthesis of 1-Aminoindanes via [3 + 2] Annulation of Aldimines with Alkenes by Scandium-Catalyzed C-H Activation. J Am Chem Soc 2023; 145:17468-17477. [PMID: 37504799 DOI: 10.1021/jacs.3c06482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Multisubstituted chiral 1-aminoindanes are important components in many pharmaceuticals and bioactive molecules. Therefore, the development of efficient and selective methods for the synthesis of chiral 1-aminoindanes is of great interest and importance. In principle, the asymmetric [3 + 2] annulation of aldimines with alkenes through C-H activation is the most atom-efficient and straightforward route for the construction of chiral 1-aminoindanes, but such a transformation has remained undeveloped to date probably due to the lack of suitable catalysts. Herein, we report for the first time the enantioselective [3 + 2] annulation of a wide range of aromatic aldimines and alkenes via ortho-C(sp2)-H activation by chiral half-sandwich scandium catalysts, which provides a straightforward route for the synthesis of multisubstituted chiral 1-aminoindanes. This protocol features 100% atom-efficiency, broad functional group compatibility, and high regio-, diastereo-, and enantioselectivity (up to >19:1 dr and 99:1 er). Remarkably, by fine-tuning the sterics of the chiral ligand around the catalyst metal center, the diastereodivergent asymmetric [3 + 2] annulation of aldimines and styrenes has been achieved with a high level of diastereo- and enantioselectivity, offering an efficient method for the synthesis of both the trans and cis diastereomers of a novel class of chiral 1-aminoindane derivatives containing two contiguous stereocenters from the same set of starting materials. Moreover, the asymmetric [3 + 2] annulation of aldimines with aliphatic α-olefins, norbornene, and 1,3-dienes has also been achieved.
Collapse
Affiliation(s)
- Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Yan SB, Wang R, Li ZG, Li AN, Wang C, Duan WL. Copper-catalyzed asymmetric C(sp 2)-H arylation for the synthesis of P- and axially chiral phosphorus compounds. Nat Commun 2023; 14:2264. [PMID: 37081007 PMCID: PMC10119316 DOI: 10.1038/s41467-023-37987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Transition metal-catalyzed C-H bond functionalization is an important method in organic synthesis, but the development of methods that are lower cost and have a less environmental impact is desirable. Here, a Cu-catalyzed asymmetric C(sp2)-H arylation is reported. With diaryliodonium salts as arylating reagents, a range of ortho-arylated P-chiral phosphonic diamides were obtained in moderate to excellent yields with high enantioselectivities (up to 92% ee). Meanwhile, enantioselective C-3 arylation of diarylphosphine oxide indoles was also realized under similar conditions to construct axial chirality.
Collapse
Affiliation(s)
- Shao-Bai Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Rui Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Zha-Gen Li
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - An-Na Li
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, China.
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, 010021, Hohhot, China.
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, 710119, Xi'an, China.
| |
Collapse
|
16
|
Hu XM, Huang R, Wen QL, Duan YG, Cao XL, Yan SJ. Hydroxyl-Directed Rh(III)-Catalyzed C-H Functionalization: Access to Benzo[ de]chromenes. Org Lett 2023; 25:1622-1627. [PMID: 36867606 DOI: 10.1021/acs.orglett.3c00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
A cascade oxidative annulation reaction of heterocyclic ketene aminals (HKAs) with internal alkynes catalyzed by [Cp*RhCl2]2 and oxidized by Cu(OAc)2·H2O was developed to efficiently synthesize highly functionalized benzo[de]chromene derivatives in good to excellent yields. The reaction proceeded by the sequential cleavage of C(sp2)-H/O-H and C(sp2)-H/C(sp2)-H bonds. These multicomponent cascade reactions were highly regioselective. In addition, all of the benzo[de]chromene products exhibited intense fluorescence emission in the solid state, and they demonstrated concentration-dependent quenching in the presence of Fe3+, indicating that these compounds could be used in the recognition of Fe3+.
Collapse
Affiliation(s)
- Xing-Mei Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Rong Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qiu-Lin Wen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ying-Gang Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Xin-Ling Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
17
|
Lyubov DM, Khristolyubov DO, Cherkasov AV, Trifonov AA. Sc and Y Heteroalkyl and Alkyl-Hydrido Complexes Containing Diphenylmethanide Ligands [2,2′-(4-MeC 6H 3NMe 2) 2CH] −. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Dmitry M. Lyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., 603950 Nizhny Novgorod,
GSP-445, Russia
| | - Dmitry O. Khristolyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., 603950 Nizhny Novgorod,
GSP-445, Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., 603950 Nizhny Novgorod,
GSP-445, Russia
| | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., 603950 Nizhny Novgorod,
GSP-445, Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334 Moscow, GSP-1, Russia
| |
Collapse
|
18
|
Ling L, Song Z, Shan H, Wang C, Li S, Wang Y, Hu J, Chen Q, Zhang H, Yang Y. Design and synthesis of a new family of planar and central chiral ferrocenyl phosphine ligands. Chem Commun (Camb) 2023; 59:2739-2742. [PMID: 36744593 DOI: 10.1039/d2cc06492h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A family of planar chiral indene-fused ferrocenes were prepared through an intramolecular asymmetric C-H arylation in excellent yields (up to 99%) with excellent enantioselectivities (up to 99% ee). They were thereafter successfully transformed to chiral ferrocenyl phosphines, featuring both planar and central chiralities, in good yields (up to 83%) and excellent diastereoselectivities (up to 99% de) through highly diastereoselective phosphination. This protocol offers a general method for planar and central chiral ferrocenyl phosphines. The potential applications of the newly developed ligands were demonstrated by a Pd-catalyzed enantioselective allylic alkylation reaction, in which high enantioselectivity (92% ee) and good yield (89%) were obtained.
Collapse
Affiliation(s)
- Li Ling
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Zeli Song
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - He Shan
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Chao Wang
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Shouting Li
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Yanjiao Wang
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Jianfeng Hu
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Qian Chen
- College of Chemical Engineering, Southwest Forestry University, Kunming, 650224, P. R. China
| | - Hao Zhang
- College of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China. .,Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China. .,National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing 101400, P. R. China
| |
Collapse
|
19
|
Zhong K, Liu S, He X, Ni H, Lai W, Gong W, Shan C, Zhao Z, Lan Y, Bai R. Oxidative cyclopalladation triggers the hydroalkylation of alkynes. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
20
|
Cao F, Wu P, Zhou Y, Zhang N, Xue Z, Shi L, Zhou G, Luo G. Mechanism and Origin of Site Selectivity and Regioselectivity of Scandium-Catalyzed Benzylic C-H Alkylation of Tertiary Anilines with Alkenes. Inorg Chem 2023; 62:979-988. [PMID: 36603128 DOI: 10.1021/acs.inorgchem.2c03830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Benzylic C(sp3)-H alkylation of tertiary anilines with alkenes by an anilido-oxazoline-ligated scandium alkyl catalyst was recently reported with C-H site selectivity and alkene-dependent regioselectivity. Revealing the mechanism and origin of selectivity is undoubtedly of great importance for understanding experimental observations and developing new reactions. Herein, density functional theory (DFT) calculations have been carried out on the model reaction of Sc-catalyzed benzylic C(sp3)-H alkylation of N,N-dimethyl-o-toluidine with allylbenzene. The reaction generally undergoes the generation of active species, alkene insertion, and protonation steps. The difference of the distortion energy of the aniline moiety in transition states, which is related to the ring size of the forming metallacycles, accounts for the site selectivity of C-H activation. Benzylic C(sp3)-H activation possessing less strained five-membered metallacycle compared to the ortho-C(sp2)-H and α-methyl C(sp3)-H activation results in benzylic C(sp3)-H alkylation observed experimentally. Both steric and electronic factors are responsible for the 1,2-insertion regioselectivity for alkyl-substituted alkenes, while electronic factors control the 2,1-insertion manner for vinylsilanes. The analysis of original alkene substrates further strengthens the understanding of the alkene-dependent regioselectivity. These results help us to obtain the mechanistic understanding and are expected to be conducive to the development of new C-H functionalization reactions.
Collapse
Affiliation(s)
- Fanshu Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yu Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Guangli Zhou
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
21
|
Vázquez-Domínguez P, Romero-Arenas A, Fernández R, Lassaletta JM, Ros A. Ir-Catalyzed Asymmetric Hydroarylation of Alkynes for the Synthesis of Axially Chiral Heterobiaryls. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pablo Vázquez-Domínguez
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Seville, Spain
| | - Antonio Romero-Arenas
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO−CINQA), C/Prof. García González, 1, 41012 Seville, Spain
| | - José María Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
| | - Abel Ros
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|
22
|
Yang C, Shi L, Wang F, Su Y, Xia JB, Li F. Rhodium-Catalyzed Asymmetric (3 + 2 + 2) Annulation via N–H/C–H Dual Activation and Internal Alkyne Insertion toward N-Fused 5/7 Bicycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Yang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yijin Su
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
23
|
Taranenko GR, Selikhov AN, Nelyubina YV, Trifonov AA. Helicate tris(aryl)carbinolates bearing pendant NR2 donors – a new family of supporting ligands for the synthesis of Sc3+ alkyl complexes. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Wang H, Li H, Chen X, Zhou C, Li S, Yang YF, Li G. Asymmetric Remote meta-C–H Activation Controlled by a Chiral Ligand. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiling Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
25
|
Wu P, Cao F, Zhou Y, Xue Z, Zhang N, Shi L, Luo G. Substrate Facilitating Roles in Rare-Earth-Catalyzed C-H Alkenylation of Pyridines with Allenes: Mechanism and Origins of Regio- and Stereoselectivity. Inorg Chem 2022; 61:17330-17341. [PMID: 36259978 DOI: 10.1021/acs.inorgchem.2c02953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although considerable progress has been achieved in C-H functionalization by cationic rare-earth alkyl complexes, the potential facilitating roles of heteroatom-containing substrates during the catalytic cycle remain highly underestimated. Herein, theoretical studies on the model reaction of C(sp2)-H addition of pyridines to allenes by scandium catalyst were carefully carried out to reveal the detailed mechanism. A coordinating pyridine substrate as a ligand can effectively stabilize some key structures. An obvious facilitating role delivered by the coordinating pyridine was found for allene insertion, while the pyridine-free mechanism prefers to occur for C(sp2)-H activation processes. Importantly, the elusive role of heteroatom-containing substrates was systematically revealed for the C-H activation event by designing a metal/ligand combination of catalysts and substrates. We found that the pyridyl C(sp2)-H activation would be switched to the pyridine-coordinated mechanism in the cases of the designed Y and La catalysts. To date, this is the first time to realize the potential substrate-facilitating role in cationic rare-earth-catalyzed C-H activation processes. Moreover, theoretical predictions show that similar switchable mechanisms also work for other types of C-H bonds and other heteroatom-involved substrates by fine-adjusting the steric surroundings of catalysts. The two C-H activation mechanisms are mainly the result of the delicate balance between electronic and steric factors. In general, the catalytic system with less steric hindrance prefers to undergo the substrate-coordinated mechanism. In contrast, the substrate-free mechanism is favorable due to steric repulsion. These results are helpful for us to better understand the variant mechanisms in rare-earth-catalyzed C-H functionalization at the atomistic level and may help guide the rational design of new catalytic reactions. In addition, the origins of the regio- and stereoselectivity were discussed through geometric parameters and distortion/interaction analysis.
Collapse
Affiliation(s)
- Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Fanshu Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yu Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
26
|
Mishra A, Wu P, Cong X, Nishiura M, Luo G, Hou Z. Exo-Selective Intramolecular C–H Alkylation with 1,1-Disubstituted Alkenes by Rare-Earth Catalysts: Construction of Indanes and Tetralins with an All-Carbon Quaternary Center. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aniket Mishra
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Advanced Application of Planar Chiral Heterocyclic Ferrocenes. INORGANICS 2022. [DOI: 10.3390/inorganics10100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This manuscript is reviewing the superior catalytic activity and selectivity of ferrocene ligands in a wide range of reactions: reduction of ketones, hydrogenation of olefins, hydroboration, cycloaddition, enantioselective synthesis of biaryls, Tsuji–Trost allylation. Moreover, the correlation between a ligand structure and its catalytic activity is discussed in this review.
Collapse
|
28
|
Yue Q, Liu B, Liao G, Shi BF. Binaphthyl Scaffold: A Class of Versatile Structure in Asymmetric C–H Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qiang Yue
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi330031, China
| | - Gang Liao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543Republic of Singapore
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan453007, China
| |
Collapse
|
29
|
Zhou W, Cong X, Nishiura M, Hou Z. Synthesis of allylanilines via scandium-catalysed benzylic C(sp 3)-H alkenylation with alkynes. Chem Commun (Camb) 2022; 58:7257-7260. [PMID: 35666084 DOI: 10.1039/d2cc02489f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ortho-selective benzylic C(sp3)-H alkenylation of 2-methyl tertiary anilines with internal alkynes has been achieved for the first time by using a half-sandwich scandium catalyst. This protocol provides a straightforward route for the synthesis of a new family of 2-allylaniline derivatives, featuring broad substrate scope, 100% atom-efficiency, high yields, and high chemo-, regio-, and stereoselectivity.
Collapse
Affiliation(s)
- Wei Zhou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
30
|
Electrochemically driven regioselective C-H phosphorylation of group 8 metallocenes. Nat Commun 2022; 13:3496. [PMID: 35715392 PMCID: PMC9206016 DOI: 10.1038/s41467-022-31178-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023] Open
Abstract
Metallocenes are privileged backbones for synthesis and catalysis. However, the direct dehydrogenative C−H functionalization of unsymmetric metallocenes suffers from reactivity and selectivity issues. Herein, we report an electrochemically driven regioselective C−H phosphorylation of group 8 metallocenes. Mechanistic investigations indicate this dehydrogenative cross coupling occurs through an electrophilic radical substitution of the metallocene with a phosphoryl radical, facilitated by the metallocene itself. This work not only offers an efficient and divergent synthesis of phosphorylated metallocenes, but also provides a guide to interpret the reactivity and regioselectivity for the C−H functionalization of unsymmetric metallocenes. Metallocene-based phosphines are compounds with potential use in catalysis. Here, the authors report the electrochemical regioselective functionalization of group 8 metallocenes with phosphine oxides; over 60 examples of phosphorylated (benzo)ferrocenes and ruthenocenes can be accessed via this method without the need for a preinstalled directing group.
Collapse
|
31
|
Xu X, Sun Q, Xu X. Scandium-Catalyzed Benzylic C(sp 3)-H Alkenylation of Tertiary Anilines with Alkynes. Org Lett 2022; 24:3970-3975. [PMID: 35640076 DOI: 10.1021/acs.orglett.2c01329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work describes the chemo- and stereoselective benzylic C(sp3)-H alkenylation of tertiary ortho-methyl anilines with internal alkynes using a simple β-diketiminato scandium catalyst. This protocol offers an efficient method for the synthesis of a new family of tertiary ortho-allylanilines in high yields. The resultant alkenylation products facilely underwent further chemical transformation to other valuable anilines. A cationic scandium benzyl species was isolated from a stoichiometric reaction and confirmed to be the catalytic intermediate.
Collapse
Affiliation(s)
- Xian Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qianlin Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
32
|
Zhang ZZ, Huang DY, Shi BF. Recent advances in the synthesis of ferrocene derivatives via 3d transition metal-catalyzed C-H functionalization. Org Biomol Chem 2022; 20:4061-4073. [PMID: 35521690 DOI: 10.1039/d2ob00558a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In recent years, transition-metal-catalyzed C-H functionalization has gradually developed into a powerful tool for the synthesis of ferrocenes in an atom- and step-economic fashion. However, despite significant achievements, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. The use of inexpensive and sustainable 3d metals in the C-H functionalization of ferrocenes remains challenging, especially the development of asymmetric versions. Herein, we summarize the remarkable recent progress in the synthesis of ferrocenes by 3d transition metal-catalyzed C-H activation until December 2021.
Collapse
Affiliation(s)
- Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China.
| | - Dan-Ying Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
33
|
Zhou Y, Wu P, Cao F, Shi L, Zhang N, Xue Z, Luo G. Mechanistic insights into rare-earth-catalysed C-H alkylation of sulfides: sulfide facilitating alkene insertion and beyond. RSC Adv 2022; 12:13593-13599. [PMID: 35530397 PMCID: PMC9069833 DOI: 10.1039/d2ra02180c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
The catalytic C-H alkylation with alkenes is of much interest and importance, as it offers a 100% atom efficient route for C-C bond construction. In the past decade, great progress in rare-earth catalysed C-H alkylation of various heteroatom-containing substrates with alkenes has been made. However, whether or how a heteroatom-containing substrate would influence the coordination or insertion of an alkene at the catalyst metal center remained elusive. In this work, the mechanism of Sc-catalysed C-H alkylation of sulfides with alkenes and dienes has been carefully examined by DFT calculations, which revealed that the alkene insertion could proceed via a sulfide-facilitated mechanism. It has been found that a similar mechanism may also work for the C-H alkylation of other heteroatom-containing substrates such as pyridine and anisole. Moreover, the substrate-facilitated alkene insertion mechanism and a substrate-free one could be switched by fine-tuning the sterics of catalysts and substrates. This work provides new insights into the role of heteroatom-containing substrates in alkene-insertion-involved reactions, and may help guide designing new catalysis systems.
Collapse
Affiliation(s)
- Yu Zhou
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Fanshu Cao
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| |
Collapse
|
34
|
Selikhov AN, Cherkasov AV, Lyssenko KA, Trifonov AA. Thermally Stable Cationic Bis(benzhydryl) Complexes of Early Lanthanides (La, Ce, Nd). Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander N. Selikhov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia
| | - Konstantin A. Lyssenko
- Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Building 3, 119991 Moscow, Russia
| | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950 Nizhny Novgorod, Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334 Moscow, Russia
| |
Collapse
|
35
|
Wang Q, Nie YH, Liu CX, Zhang WW, Wu ZJ, Gu Q, Zheng C, You SL. Rhodium(III)-Catalyzed Enantioselective C–H Activation/Annulation of Ferrocenecarboxamides with Internal Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Quannan Wang
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Yu-Han Nie
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Wen Zhang
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Zhi-Jie Wu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
36
|
Lv X, Xu J, Sun C, Su F, Cai Y, Jin Z, Chi YR. Access to Planar Chiral Ferrocenes via N-Heterocyclic Carbene-Catalyzed Enantioselective Desymmetrization Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaokang Lv
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Cuiyun Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Fen Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuanlin Cai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
37
|
Cong X, Zhuo Q, Hao N, Mo Z, Zhan G, Nishiura M, Hou Z. Regio‐ and Diastereoselective [3+2] Annulation of Aliphatic Aldimines with Alkenes by Scandium‐Catalyzed β‐C(sp
3
)−H Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xuefeng Cong
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Na Hao
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Zhenbo Mo
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Gu Zhan
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| |
Collapse
|
38
|
Peng X, Bai R, Liu S, Li Z, Jiao L. Substitution of diarylphosphoryl azides with aliphatic amines catalyzed by simple rare‐earth metal salts: Efficient and novel preparation of phosphoryl amides. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin‐Hua Peng
- School of Chemical Engineering Northwest University Xi'an China
| | - Rui Bai
- School of Chemical Engineering Northwest University Xi'an China
| | - Shanshan Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering Shaanxi University of Science and Technology Xi'an China
| | - Zhuo Li
- School of Chemical Engineering Northwest University Xi'an China
- International Scientific and Technological Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advance Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi Xi'an China
| | - Lin‐Yu Jiao
- School of Chemical Engineering Northwest University Xi'an China
- International Scientific and Technological Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advance Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi Xi'an China
| |
Collapse
|
39
|
Zou X, Li Y, Ke Z, Xu S. Chiral Bidentate Boryl Ligand-Enabled Iridium-Catalyzed Enantioselective Dual C–H Borylation of Ferrocenes: Reaction Development and Mechanistic Insights. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoliang Zou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yinwu Li
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
40
|
Yu X, Zhang ZZ, Niu JL, Shi BF. Coordination-assisted, transition-metal-catalyzed enantioselective desymmetric C–H functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in transition-metal-catalyzed enantioselective desymmetric C–H functionalization are summarized.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuo-Zhuo Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun-Long Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
41
|
Seth K. Recent progress in rare-earth metal-catalyzed sp 2 and sp 3 C–H functionalization to construct C–C and C–heteroelement bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01859k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The review presents rare-earth metal-catalyzed C(sp2/sp3)–H functionalization accessing C–C/C–heteroatom bonds and olefin (co)polymerization, highlighting substrate scope, mechanistic realization, and origin of site-, enantio-/diastereo-selectivity.
Collapse
Affiliation(s)
- Kapileswar Seth
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) – Guwahati, Sila Katamur, Changsari, Kamrup 781101, Assam, India
| |
Collapse
|
42
|
Cong X, Zhuo Q, Hao N, Mo Z, Zhan G, Nishiura M, Hou Z. Regio- and Diastereoselective [3+2] Annulation of Aliphatic Aldimines with Alkenes by Scandium-Catalyzed β-C(sp 3 )-H Activation. Angew Chem Int Ed Engl 2021; 61:e202115996. [PMID: 34913239 DOI: 10.1002/anie.202115996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/13/2022]
Abstract
Here we report for the first time the regio- and diastereoselective [3+2] annulation of a wide range of aliphatic aldimines with alkenes via the activation of an unactivated β-C(sp3 )-H bond by half-sandwich scandium catalysts. This protocol offers a straightforward and atom-efficient route for the synthesis of a new family of multi-substituted aminocyclopentane derivatives from easily accessible aliphatic aldimines and alkenes. The annulation of aldimines with styrenes exclusively afforded the 5-aryl-trans-substituted 1-aminocyclopentane derivatives with excellent diastereoselectivity through the 2,1-insertion of a styrene unit. The annulation of aldimines with aliphatic alkenes selectively gave the 4-alkyl-trans-substituted 1-aminocyclopentane products in a 1,2-insertion fashion. A catalytic amount of an appropriate amine such as adamantylamine (AdNH2 ) or dibenzylamine (Bn2 NH) showed significant effects on the catalyst activity and stereoselectivity.
Collapse
Affiliation(s)
- Xuefeng Cong
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Qingde Zhuo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Na Hao
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Zhenbo Mo
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Gu Zhan
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
43
|
Lou SJ, Luo G, Yamaguchi S, An K, Nishiura M, Hou Z. Modular Access to Spiro-dihydroquinolines via Scandium-Catalyzed Dearomative Annulation of Quinolines with Alkynes. J Am Chem Soc 2021; 143:20462-20471. [PMID: 34813697 DOI: 10.1021/jacs.1c10743] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic enantioselective construction of three-dimensional molecular architectures from planar aromatics such as quinolines is of great interest and importance from the viewpoint of both organic synthesis and drug discovery, but there still exist many challenges. Here, we report the scandium-catalyzed asymmetric dearomative spiro-annulation of quinolines with alkynes. This protocol offers an efficient and selective route for the synthesis of spiro-dihydroquinoline derivatives containing a quaternary carbon stereocenter with an unprotected N-H group from readily accessible quinolines and diverse alkynes, featuring high yields, high enantioselectivity, 100% atom-efficiency, and broad substrate scope. Experimental and density functional theory studies revealed that the reaction proceeded through the C-H activation of the 2-aryl substituent in a quinoline substrate by a scandium alkyl (or amido) species followed by alkyne insertion into the Sc-aryl bond and the subsequent dearomative 1,2-addition of the resulting scandium alkenyl species to the C═N unit in the quinoline moiety. This work opens a new avenue for the dearomatization of quinolines, leading to efficient and selective construction of spiro molecular architectures that were previously difficult to access by other means.
Collapse
Affiliation(s)
- Shao-Jie Lou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shigeru Yamaguchi
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kun An
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
44
|
Hu Y, Nan J, Yin J, Huang G, Ren X, Ma Y. Rhodium-Catalyzed Dehydrogenative Annulation of N-Arylmethanimines with Vinylene Carbonate for Synthesizing Quinolines. Org Lett 2021; 23:8527-8532. [PMID: 34670369 DOI: 10.1021/acs.orglett.1c03231] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report a novel Rh-catalyzed C-H/C-H alkenylation of N-arylmethanimines with vinylene carbonate acting as a vinylene unit. Forty examples of C3,C4-nonsubstituted quinolines were achieved from commercially available starting materials. This identified process features an exceedingly simple system, a lower loading of catalyst, and the capacity for postfunctionalization with bioactive molecules.
Collapse
Affiliation(s)
- Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiacheng Yin
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guanjie Huang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Ren
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
45
|
Jia ZS, Yue Q, Li Y, Xu XT, Zhang K, Shi BF. Copper-catalyzed monoselective C-H amination of ferrocenes with alkylamines. Beilstein J Org Chem 2021; 17:2488-2495. [PMID: 34646397 PMCID: PMC8491713 DOI: 10.3762/bjoc.17.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
A copper-catalyzed mono-selective C–H amination of ferrocenes assisted by 8-aminoquinoline is presented here. A range of amines, including bioactive molecules, were successfully installed to the ortho-position of ferrocene amides with high efficiency under mild conditions. A range of functionalized ferrocenes were compatible to give the aminated products in moderate to good yields. The gram-scale reaction was smoothly conducted and the directing group could be removed easily under basic conditions.
Collapse
Affiliation(s)
- Zhen-Sheng Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Qiang Yue
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ya Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, He'nan, 453007, China
| |
Collapse
|
46
|
Pan C, Yin SY, Gu Q, You SL. Cp xM(iii)-catalyzed enantioselective C-H functionalization through migratory insertion of metal-carbenes/nitrenes. Org Biomol Chem 2021; 19:7264-7275. [PMID: 34612356 DOI: 10.1039/d1ob01248g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CpxM(iii)-catalyzed enantioselective C-H functionalization reactions have progressed rapidly using either chiral cyclopentadienyl ligands or appropriate chiral carboxylic acids. In this context, highly reactive carbene and nitrene precursors can serve as effective C-H coupling partners, providing a straightforward and efficient approach to access chiral molecules. In this review, we highlight the developments in CpxM(iii)-catalyzed enantioselective C-H functionalization reactions through migratory insertion of metal-carbenes/nitrenes by employing chiral CpxM(iii) complexes or achiral CpxM(iii) complexes combined with chiral carboxylic acids.
Collapse
Affiliation(s)
- Chongqing Pan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | | | | | | |
Collapse
|
47
|
Zhang M, Gao S, Tang J, Chen L, Liu A, Sheng S, Zhang AQ. Asymmetric synthesis of chiral organosilicon compounds via transition metal-catalyzed stereoselective C-H activation and silylation. Chem Commun (Camb) 2021; 57:8250-8263. [PMID: 34323898 DOI: 10.1039/d1cc02839a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This feature article details the progress of transition metal-catalyzed stereoselective sp2 and sp3 C-H activation and silylation in the synthesis of chiral organosilicon compounds, and the asymmetric C-H silylation includes intramolecular cyclizing silylation and intermolecular silylation. The silylating reagents include monohydrosilanes, dihydrosilanes, silacylcobutanes and disilanes. In general, catalytic systems include a transition metal salt as the catalyst and a chiral ligand. No external chiral ligand is required in some cases where the chiral substrates act as the source of chirality. Many kinds of silylated compounds with central, axial, planar, or helical chirality have been constructed via C-H activation by asymmetric rhodium, iridium or palladium catalysis. Some pharmacophores and material building blocks were successfully introduced into the target molecules. Some silylated products proved to be useful in medicinal chemistry, synthetic organic chemistry, and materials science. Besides reaction development, mechanisms for stereoselective C-H activation and silylation are also discussed.
Collapse
Affiliation(s)
- Ming Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu Campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem 2021; 17:1849-1938. [PMID: 34386103 PMCID: PMC8329403 DOI: 10.3762/bjoc.17.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Several valuable biologically active molecules can be obtained through C-H activation processes. However, the use of expensive and not readily accessible catalysts complicates the process of pharmacological application of these compounds. A plausible way to overcome this issue is developing and using cheaper, more accessible, and equally effective catalysts. First-row transition (3d) metals have shown to be important catalysts in this matter. This review summarizes the use of 3d metal catalysts in C-H activation processes to obtain potentially (or proved) biologically active compounds.
Collapse
Affiliation(s)
- Renato L Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Amanda S de Miranda
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| | - Roberto S Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
- Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos – UFSCar, CEP 13565-905, São Carlos, SP, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
49
|
Pan C, Yin SY, Wang SB, Gu Q, You SL. Oxygen-Linked Cyclopentadienyl Rhodium(III) Complexes-Catalyzed Asymmetric C-H Arylation of Benzo[h]quinolines with 1-Diazonaphthoquinones. Angew Chem Int Ed Engl 2021; 60:15510-15516. [PMID: 33856719 DOI: 10.1002/anie.202103638] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 12/24/2022]
Abstract
Chiral cyclopentadienyl rhodium (CpRh) complex-catalyzed asymmetric C-H functionalization reactions have witnessed a significant progress in organic synthesis. In sharp contrast, the reported chiral Cp ligands are limited to C-linked Cp and are often synthetically challenging. To address these issues, we have developed a novel class of tunable chiral cyclopentadienyl ligands bearing oxygen linkers, which were efficient catalysts for C-H arylation of benzo[h]quinolines with 1-diazonaphthoquinones, affording axially chiral heterobiaryls in excellent yields and enantioselectivity (up to 99 % yield, 98.5:1.5 er). Mechanistic studies suggest that the reaction is likely to proceed by electrophilic C-H activation, and followed by coupling of the cyclometalated rhodium(III) complex with 1-diazonaphthoquinones.
Collapse
Affiliation(s)
- Chongqing Pan
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| | - Si-Yong Yin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| | - Shao-Bo Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
50
|
Pan C, Yin S, Wang S, Gu Q, You S. Oxygen‐Linked Cyclopentadienyl Rhodium(III) Complexes‐Catalyzed Asymmetric C−H Arylation of Benzo[
h
]quinolines with 1‐Diazonaphthoquinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103638] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chongqing Pan
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Si‐Yong Yin
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Shao‐Bo Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|