1
|
Kundu BK, Sun Y. Electricity-driven organic hydrogenation using water as the hydrogen source. Chem Sci 2024; 15:d4sc03836c. [PMID: 39371462 PMCID: PMC11450802 DOI: 10.1039/d4sc03836c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024] Open
Abstract
Hydrogenation is a pivotal process in organic synthesis and various catalytic strategies have been developed in achieving effective hydrogenation of diverse substrates. Despite the competence of these methods, the predominant reliance on molecular hydrogen (H2) gas under high temperature and elevated pressure presents operational challenges. Other alternative hydrogen sources such as inorganic hydrides and organic acids are often prohibitively expensive, limiting their practical utility on a large scale. In contrast, employing water as a hydrogen source for organic hydrogenation presents an attractive and sustainable alternative, promising to overcome the drawbacks associated with traditional hydrogen sources. Integrated with electricity as the sole driving force under ambient conditions, hydrogenation using water as the sole hydrogen source aligns well with the environmental sustainability goals but also offers a safer and potentially more cost-effective solution. This article starts with the discussion on the inherent advantages and limitations of conventional hydrogen sources compared to water in hydrogenation reactions, followed by the introduction of representative electrocatalytic systems that successfully utilize water as the hydrogen source in realizing a large number of organic hydrogenation transformations, with a focus on heterogeneous electrocatalysts. In summary, transitioning to water as a hydrogen source in organic hydrogenation represents a promising direction for sustainable chemistry. In particular, by exploring and optimizing electrocatalytic hydrogenation systems, the chemical industry can reduce its reliance on hazardous and expensive hydrogen sources, paving the way for safer, greener, and less energy-intensive hydrogenation processes.
Collapse
Affiliation(s)
- Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati Cincinnati Ohio 45221 USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati Cincinnati Ohio 45221 USA
| |
Collapse
|
2
|
Das TK, Rodriguez Treviño AM, Pandiri S, Irvankoski S, Siito-Nen JH, Rodriguez SM, Yousufuddin M, Kürti L. Catalyst-Free Transfer Hydrogenation of Activated Alkenes Exploiting Isopropanol as the Sole and Traceless Reductant. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:746-754. [PMID: 37637778 PMCID: PMC10457099 DOI: 10.1039/d2gc04315g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Both metal-catalyzed and organocatalytic transfer hydrogenation reactions are widely employed for the reduction of C=O and C=N bonds. However, selective transfer hydrogenation reactions of C=C bonds remain challenging. Therefore, the chemoselective transfer hydrogenation of olefins under mild conditions and in the absence of metal catalysts, using readily available and inexpensive reducing agents (i.e. primary and secondary alcohols), will mark a significant advancement towards the development of green transfer hydrogenation strategies. Described herein is an unconventional catalyst-free transfer hydrogenation reaction of activated alkenes using isopropanol as an eco-friendly reductant and solvent. The reaction gives convenient synthetic access to a wide range of substituted malonic acid half oxyesters (SMAHOs) in moderate to good yields. Mechanistic investigations point towards an unprecedented hydrogen bond-assisted transfer hydrogenation process.
Collapse
Affiliation(s)
- Tamal Kanti Das
- Department of Chemistry, Rice University, Houston, Texas 77030, USA
| | | | - Sanjay Pandiri
- Department of Chemistry, Rice University, Houston, Texas 77030, USA
| | - Sini Irvankoski
- Department of Chemistry and Materials Science, Aalto University, FI-02150 Espoo, Finland
| | - Juha H Siito-Nen
- Department of Chemistry and Materials Science, Aalto University, FI-02150 Espoo, Finland
| | - Sara M Rodriguez
- Department of Natural Sciences, University of North Texas at Dallas, Dallas, Texas 75241, USA
| | - Muhammed Yousufuddin
- Department of Natural Sciences, University of North Texas at Dallas, Dallas, Texas 75241, USA
| | - László Kürti
- Department of Chemistry, Rice University, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Zhao S, Yuan A, Xu H, Wei Z, Zhou S, Xiao Y, Jiang L, Lei J. Elevating the Photothermal Conversion Efficiency of Phase-Change Materials Simultaneously toward Solar Energy Storage, Self-Healing, and Recyclability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29213-29222. [PMID: 35714067 DOI: 10.1021/acsami.2c05302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To alleviate the predicament of resource shortage and environmental pollution, efficiently using abundant solar energy is a great challenge. Herein, we prepared unique photothermal conversion phase-change materials, namely, CNT@PCMs, by introducing carbon nanotubes (CNTs) used as photothermal conversion materials into the recyclable matrix of phase-change materials (PCMs). These devised CNT@PCMs cleverly combine the photothermal conversion capability of CNTs and the thermal energy storage capability of traditional PCMs. Especially, the surface temperature of the prepared CNT@PCMs can be raised to 100 °C within 165 s under the solar simulator (150 mW cm-2), showing a surprising heating rate that is much higher than that of the reported works and achieving a higher photothermal conversion efficiency for solar energy in this work. Furthermore, these CNT@PCMs can hold high melting latent heat with a maximum value at 110.0 J g-1, exhibiting remarkable thermal storage ability aside from preeminent photothermal conversion capability. Intriguingly, the introduction of dynamic oxime group-carbamate bonds into the molecular structure can endow CNT@PCMs with an outstanding self-healing performance and recyclability. The broken CNT@PCMs sample can be healed in 2 min under IR-laser irradiation. Importantly, the phase-change and mechanical properties and photothermal conversion efficiency of CNT@PCMs can also remain virtually unchanged after multiple recycles. It is of great significance to design this style of CNT@PCMs for achieving the efficient utilization of solar energy and environmental protection.
Collapse
Affiliation(s)
- Shiwei Zhao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Anqian Yuan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Hualiang Xu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhengkai Wei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shiyi Zhou
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yao Xiao
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Liang Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Ishida N, Ito M, Murakami M. Thermal Metathesis of C–C Single Bonds Induced by Steric Frustration. CHEM LETT 2022. [DOI: 10.1246/cl.220208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Misato Ito
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| |
Collapse
|
5
|
Zhang C, Gao K, Zhu H, Liu J, Chen J, Xie F, Xie W, Wang X. Fast interlayer charge separation and transmission in ZnIn2S4/CNTs/ZnS heterojunctions for efficient photocatalytic hydrogen evolution. ChemCatChem 2022. [DOI: 10.1002/cctc.202200225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chengming Zhang
- Anhui Jianzhu University School of Materials and Chemical Engineering CHINA
| | - Kaiyue Gao
- Anhui Jianzhu University School of Materials and Chemical Engineering CHINA
| | - Haibao Zhu
- Anhui Jianzhu University School of Materials and Chemical Engineering CHINA
| | - Jingwei Liu
- Anhui Jianzhu University School of Materials and Chemical Engineering CHINA
| | - Jianli Chen
- Anhui Jianzhu University School of Materials and Chemical Engineering CHINA
| | - Fazhi Xie
- Anhui Jianzhu University School of Materials and Chemical Engineering CHINA
| | - Wenjie Xie
- Anhui Jianzhu University School of Materials and Chemical Engineering CHINA
| | - Xiufang Wang
- Anhui Jianzhu University North Campus: Anhui Jianzhu University School of Materials and Chemical Engineering Ziyun Road 230601 Hefei CHINA
| |
Collapse
|
6
|
Cantopcu E, Aydinli E, Goksu H. Homogeneous catalyst containing Pd in the reduction of aryl azides to primary amines. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Kuram MR, Yadav S, Chaudhary D, Maurya NK, Kumar D, Km I. Transfer hydrogenation of pyridinium and quinolinium species using ethanol as a hydrogen source to access saturated N-heterocycles. Chem Commun (Camb) 2022; 58:4255-4258. [DOI: 10.1039/d2cc00241h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic transfer hydrogenation (TH) for the reduction of heterocycles is an emerging strategy for accessing biologically active saturated N-heterocycles. Herein, we report a TH protocol that utilizes ethanol as a...
Collapse
|
8
|
Astakhov AV, Chernenko AY, Kutyrev VV, Ranny GS, Minyaev ME, Chernyshev VM, Ananikov VP. Selective Buchwald–Hartwig arylation of C-amino-1,2,4-triazoles and other coordinating aminoheterocycles enabled by bulky NHC ligands and TPEDO activator. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01832b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A facile method for selective N-(hetero)arylation of coordinating 3(5)-amino-1,2,4-triazoles under Pd/NHC catalysis using TPEDO as a new efficient Pd(ii) to Pd(0) reductant has been developed.
Collapse
Affiliation(s)
- Alexander V. Astakhov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Andrey Yu. Chernenko
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Vadim V. Kutyrev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Gleb S. Ranny
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Victor M. Chernyshev
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University, (NPI), Prosvescheniya st., 132, Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
9
|
Zhang Y, Yu W, Cao S, Sun Z, Nie X, Liu Y, Zhao Z. Photocatalytic Chemoselective Transfer Hydrogenation of Quinolines to Tetrahydroquinolines on Hierarchical NiO/In 2O 3–CdS Microspheres. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiwei Yu
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuo Cao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhe Sun
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Zhongkui Zhao
- State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Li Q, Wang F, Zhou X, Chen J, Tang C, Zhang L. Synergistical photo-thermal-catalysis of Zn2GeO4:xFe3+ for H2 evolution in NaBH4 hydrolysis reaction. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
11
|
Brahmachari G, Bhowmick A, Karmakar I. Visible Light-Driven and Singlet Oxygen-Mediated Photochemical Cross-Dehydrogenative C 3-H Sulfenylation of 4-Hydroxycoumarins with Thiols Using Rose Bengal as a Photosensitizer. J Org Chem 2021; 86:9658-9669. [PMID: 34213909 DOI: 10.1021/acs.joc.1c00919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible light (white light-emitting diode/direct sunlight)-driven photochemical synthesis of a new series of biologically interesting 3-(alkyl/benzylthio)-4-hydroxy-2H-chromen-2-ones has been achieved through a cross-dehydrogenative C3-H sulfenylation of 4-hydroxycoumarins with thiols at ambient temperature in the presence of rose bengal in acetonitrile under an oxygen atmosphere. The notable features of this newly developed method are mild reaction conditions, energy efficiency, metal-free synthesis, good to excellent yields, use of low-cost materials, and eco-friendliness.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Anindita Bhowmick
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| |
Collapse
|