1
|
Dixit SJN, Ghosh R, Agarwal N. Unveiling emissive H-aggregates of benzocoronenediimide, their photophysics and ultrafast exciton dynamics. Phys Chem Chem Phys 2024; 27:175-181. [PMID: 39629662 DOI: 10.1039/d4cp04084h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
H- and J-aggregates of many molecules can be considered ordered mesoscopic structures that behave like a single entity. This is due to coherent electronic coupling between electronic excitations of aggregated molecules, resulting in distinct electronic properties compared to the monomer. H-aggregates are generally non-emissive and, due to this property, they are considered unfit for optoelectronics applications, but they have found applications in organic light-emitting transistors. Herein, we designed t-butyl-substituted benzocoronenediimide (t-But-BCDI) forming rare emissive H-aggregates. The tertiary butyl groups are placed to inhibit the formation of strong aggregates. Photophysical studies showed that t-But-BCDI forms H-aggregates in a concentrated solution in a THF/CHCl3 mixture. A blue shift in absorption along with a decrease in the A0-0/A0-1 ratio and red-shifted weaker emission are observed for the aggregate compared to the monomer. Ultrafast transient absorption studies revealed biphasic relaxation with lifetimes of 150 (±10) fs and 13 (±2) ps, which are attributed to a higher-to-lower state transition and vibrational cooling, respectively. The transient spectral signature suggests the Frenkel-type (localized to a monomer) character of the exciton. Faster evolution at the tens of picosecond timescale suggests relaxation of the exciton state within the H-type exciton band. An extraordinarily long emission lifetime from the H-aggregated state is observed.
Collapse
Affiliation(s)
- Swati J N Dixit
- School of Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India.
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Neeraj Agarwal
- School of Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India.
| |
Collapse
|
2
|
Gorai S, Agrawal R, Ghosh R, Mula S. Unveiling the Ultrafast Excitation Energy Transfer in Tetraarylpyrrolo[3,2-b]pyrrole-BODIPY Dyads. Chemistry 2024; 30:e202402669. [PMID: 39403879 DOI: 10.1002/chem.202402669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
We have synthesized two dyads (dyad 1 and 2) comprising of tetraarylpyrrolo[3,2-b]pyrrole (TAPP) and BODIPY. In dyad 1, two BODIPYs are directly connected with TAPP moiety whereas in dyad 2, BODIPYs are connected through phenylethynyl linkers. TAPP is a blue energy donor which is easy to synthesize and functionalize as compared to other well-known blue energy donors like pyrene, perylene etc. This is the first report of using TAPP as an energy donor in BODIPY based dyad molecules. Complete quenching of TAPP fluorescence in the dyads suggests fast energy transfer from TAPP to BODIPY unit (ETE~99.9 %). Ultrafast fluorescence and transient absorption spectroscopic studies of dyad 1 showed TAPP to BODIPY energy transfer in 125 fs (kET=8.0×1012 s-1) which is one of the fastest energy transfer events in BODIPY based dyad reported so far. Whereas, in dyad 2, energy transfer is almost four times slower (480 fs, kET=2.1×1012 s-1). These results were rationalized by theoretical Förster formulations. This study shows that suitably matched optical properties of TAPP and BODIPY dyes along with their easy syntheses will be the key to develop highly efficient energy transfer systems in future for multiple applications.
Collapse
Affiliation(s)
- Sudip Gorai
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Richa Agrawal
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
3
|
Perez-Castillo R, Freixas VM, Mukamel S, Martinez-Mesa A, Uranga-Piña L, Tretiak S, Gelin MF, Fernandez-Alberti S. Transient-absorption spectroscopy of dendrimers via nonadiabatic excited-state dynamics simulations. Chem Sci 2024; 15:13250-13261. [PMID: 39183915 PMCID: PMC11339953 DOI: 10.1039/d4sc01019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
The efficiency of light-harvesting and energy transfer in multi-chromophore ensembles underpins natural photosynthesis. Dendrimers are highly branched synthetic multi-chromophoric conjugated supra-molecules that mimic these natural processes. After photoexcitation, their repeated units participate in a number of intramolecular electronic energy relaxation and redistribution pathways that ultimately funnel to a sink. Here, a model four-branched dendrimer with a pyrene core is theoretically studied using nonadiabatic molecular dynamics simulations. We evaluate excited-state photoinduced dynamics of the dendrimer, and demonstrate on-the-fly simulations of its transient absorption pump-probe (TA-PP) spectra. We show how the evolutions of the simulated TA-PP spectra monitor in real time photoinduced energy relaxation and redistribution, and provide a detailed microscopic picture of the relevant energy-transfer pathways. To the best of our knowledge, this is the first of this kind of on-the-fly atomistic simulation of TA-PP signals reported for a large molecular system.
Collapse
Affiliation(s)
- Royle Perez-Castillo
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Aliezer Martinez-Mesa
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
- DynAMoS (Dynamical Processes in Atomic and Molecular Systems), Facultad de Física, Universidad de La Habana San Lázaro y L La Habana 10400 Cuba
| | - Llinersy Uranga-Piña
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
- DynAMoS (Dynamical Processes in Atomic and Molecular Systems), Facultad de Física, Universidad de La Habana San Lázaro y L La Habana 10400 Cuba
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University Hangzhou 310018 China
| | | |
Collapse
|
4
|
Zhu Y, Wu F, Zheng B, Yang Y, Yang J, Xiong H. Electron-Withdrawing Substituents Enhance the Type I PDT and NIR-II Fluorescence of BODIPY J Aggregates for Bioimaging and Cancer Therapy. NANO LETTERS 2024; 24:8287-8295. [PMID: 38941514 DOI: 10.1021/acs.nanolett.4c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Organic dyes with simultaneously boosted near-infrared-II (NIR-II) fluorescence, type I photodynamic therapy (PDT), and photothermal therapy (PTT) in the aggregate state are still elusive due to the unclear structure-function relationship. Herein, electron-withdrawing substituents are introduced at the 5-indolyl positions of BODIPY dyes to form tight J-aggregates for enhanced NIR-II fluorescence and type I PDT/PTT. The introduction of an electron-rich julolidine group at the meso position and an electron-withdrawing substituent (-F) at the indolyl moiety can enhance intermolecular charge transfer and the hydrogen bonding effect, contributing to the efficient generation of superoxide radicals in the aggregate state. The nanoparticles of BDP-F exhibit NIR-II fluorescence at 1000 nm, good superoxide radical generation ability, and a high photothermal conversion efficiency (50.9%), which enabled NIR-II fluorescence-guided vasculature/tumor imaging and additive PDT/PTT. This work provides a strategy for constructing phototheranostic agents with enhanced NIR-II fluorescence and type I PDT/PTT for broad biomedical applications.
Collapse
Affiliation(s)
- Yu Zhu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bingbing Zheng
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuexia Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jieyu Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Shahu A, Petropoulos V, Saridakis E, Petrakis VS, Ioannidis N, Mitrikas G, Schiza A, Chochos CL, Kasimati EM, Soultati A, Nika MC, Thomaidis NS, Fakis M, Maiuri M, Cerullo G, Pistolis G. Aggregation-Driven Photoinduced α-C(sp 3)-H Bond Hydroxylation/C(sp 3)-C(sp 3) Coupling of Boron Dipyrromethene Dye in Water Reported by Near-Infrared Emission. J Am Chem Soc 2024; 146:15659-15665. [PMID: 38819953 PMCID: PMC11190975 DOI: 10.1021/jacs.4c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Molecular aggregation is a powerful tool for tuning advanced materials' photophysical and electronic properties. Here we present a novel potential for the aqueous-solvated aggregated state of boron dipyrromethene (BODIPY) to facilitate phototransformations otherwise achievable only under harsh chemical conditions. We show that the photoinduced symmetry-breaking charge separation state can itself initiate catalyst-free redox chemistry, leading to selective α-C(sp3)-H bond activation/Csp3-Csp3 coupling on the BODIPY backbone. The photoproduction progress was tracked by monitoring the evolution of the strong Stokes-shifted near-infrared emission, resulting from selective self-assembly of the terminal heterodimeric photoproduct into well-ordered J-aggregates, as revealed by X-ray structural analysis. These findings provide a facile and green route to further explore the promising frontier of packing-triggered selective photoconversions via supramolecular engineering.
Collapse
Affiliation(s)
- Adelajda Shahu
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens 15771, Greece
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - Vasilis Petropoulos
- Department
of Physics, University of Patras, Patras 26504, Greece
- Department
of Physics, Politecnico di Milano, Milano 20133, Italy
| | - Emmanuel Saridakis
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - Vyron S. Petrakis
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens 15771, Greece
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - Nikolaos Ioannidis
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - George Mitrikas
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - Andriana Schiza
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens 15771, Greece
- Institute
of Chemical Biology, National Hellenic Research
Foundation, Athens 11635, Greece
| | - Christos L. Chochos
- Institute
of Chemical Biology, National Hellenic Research
Foundation, Athens 11635, Greece
| | | | - Anastasia Soultati
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| | - Maria Christina Nika
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens 15771, Greece
| | - Nikolaos S. Thomaidis
- Department
of Chemistry, National and Kapodistrian
University of Athens, Athens 15771, Greece
| | - Mihalis Fakis
- Department
of Physics, University of Patras, Patras 26504, Greece
| | | | - Giulio Cerullo
- Department
of Physics, Politecnico di Milano, Milano 20133, Italy
| | - George Pistolis
- Institute
of Nanoscience & Nanotechnology, NCSR
“Demokritos”, Athens 15310, Greece
| |
Collapse
|
6
|
Ren W, Li J, Zu B, Lei D, Dou X. Design of Highly Efficient Electronic Energy Transfer in Functionalized Quantum Dots Driven Specifically by Ethylenediamine. JACS AU 2024; 4:545-556. [PMID: 38425925 PMCID: PMC10900220 DOI: 10.1021/jacsau.3c00667] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024]
Abstract
The exploration of emerging functionalized quantum dots (QDs) through modulating the effective interaction between the sensing element and target analyte is of great significance for high-performance trace sensing. Here, the chromone-based ligand grafted QDs (QDs-Chromone) were initiated to realize the electronic energy transfer (EET) driven specifically by ethylenediamine (EDA) in the absence of spectral overlap. The fluorescent and colorimetric dual-mode responses (from red to blue and from colorless to yellow, respectively) resulting from the expanded conjugated ligands reinforced the analytical selectivity, endowing an ultrasensitive and specific response to submicromolar-liquid of EDA. In addition, a QDs-Chromone-based sensing chip was constructed to achieve the ultrasensitive recognition of EDA vapor with a naked-eye observed response at a concentration as low as 10 ppm, as well as a robust anti-interfering ability in complicated scenarios monitoring. We expect the proposed EET strategy in shaping functionalized QDs for high-performance sensing will shine light on both rational probe design methodology and deep sensing mechanism exploration.
Collapse
Affiliation(s)
- Wenfei Ren
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiguang Li
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
| | - Baiyi Zu
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Key
Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| | - Da Lei
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Key
Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| | - Xincun Dou
- Xinjiang
Key Laboratory of Trace Chemicals Sensing, Xinjiang Technical Institute
of Physics & Chemistry, Chinese Academy
of Sciences, Urumqi 830011, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key
Laboratory of Improvised Explosive Chemicals for State Market Regulation, Urumqi 830011, China
| |
Collapse
|
7
|
Song SS, Zhan J, Zhu HT, Bao JY, Wang AJ, Yuan PX, Feng JJ. Palladium nanospheres-embedded metal-organic frameworks to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene in aqueous solution for ultrasensitive Cu 2+ detection. Analyst 2024; 149:426-434. [PMID: 38099364 DOI: 10.1039/d3an01729j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Nowadays, organic emitters suffer from insufficient electrochemiluminescence (ECL) efficiency in aqueous solutions, and their practical applications are severely restricted in the bio-sensing field. In this work, palladium nanospheres-embedded metal-organic frameworks (Pd@MOFs) were exploited to enhance the ECL efficiency of 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) prepared by a one-pot method in aqueous environment. First, the Pd@MOFs were generated via in situ reduction of Pd nanospheres anchored onto the MOFs, and fabricated by orderly coordination of palladium chloride (PdCl2) with 1,2,4,5-benzenetetramine (BTA) tetrahydrochloride. Then, the influence of protons on the ECL response of BET was studied in detail to obtain stronger ECL emission using potassium persulfate (K2S2O8) as co-reactant in aqueous environment. As a result, a 1.47-fold ECL efficiency enlargement of BET/K2S2O8 was harvested at the Pd@MOFs/GCE, where Ru(bpy)32+ behaved as a standard. Based on the fact that the ECL signals of the BET-covered Pd@MOFs modified glassy carbon electrode (simplified as BET/Pd@MOFs/GCE) can be quenched by Cu2+, the as-built ECL sensor showed a wide linear range (1.0-100.0 pM) and a limit of detection (LOD) as low as 0.12 pM. Hence, such research offers huge potential to promote the development of organic emitters in ECL biosensors and environmental monitoring.
Collapse
Affiliation(s)
- Shu-Shu Song
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiale Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hao-Tian Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jing-Yi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
8
|
Buguis FL, Hsu NSY, Sirohey SA, Adam MC, Goncharova LV, Gilroy JB. Dyads and Triads of Boron Difluoride Formazanate and Boron Difluoride Dipyrromethene Dyes. Chemistry 2023; 29:e202302548. [PMID: 37725661 DOI: 10.1002/chem.202302548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Dye-dye conjugates have attracted significant interest for their utility in applications such as bioimaging, theranostics, and light-harvesting. Many classes of organic dyes have been employed in this regard; however, building blocks don't typically extend beyond small chromophores. This can lead to minor changes to the optoelectronic properties of the original dye. The exploration of dye-dye structures is impeded by long synthetic routes, incompatible synthetic conditions, or a mismatch of the desired properties. Here, we present the first-of-their-kind dye-dye conjugates of boron difluoride complexes of formazanate and dipyrromethene ligands. These conjugates exhibit dual photoluminescence bands that reach the near-infrared spectral region and implicate anti-Kasha processes. Cyclic voltammetry experiments revealed the generation of polyanionic species that can reversibly tolerate the uptake of up to 6 electrons. Ultimately, we demonstrate that BF2 formazanates can serve as a synthetically accessible platform to build upon new classes of dye-dye conjugates.
Collapse
Affiliation(s)
- Francis L Buguis
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Nathan Sung Y Hsu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Sofia A Sirohey
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Matheus C Adam
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 3K7, Canada
| | - Lyudmila V Goncharova
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 3K7, Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| |
Collapse
|
9
|
von Köller HF, Geffers FJ, Kalvani P, Foraita A, Loß PEJ, Butschke B, Jones PG, Werz DB. Access to isoindole-derived BODIPYs by an aminopalladation cascade. Chem Commun (Camb) 2023. [PMID: 37997044 DOI: 10.1039/d3cc04913b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Here, we present a new route to dyes of the BODIPY family. We first built up a N-Boc-protected dipyrromethene scaffold via an aminopalladation cascade. Subsequentially, the pyrrole moiety was deprotected and the BF2 unit inserted. Depending on the terminating reaction, BODIPYs with either aryl or alkynyl moieties were accessible.
Collapse
Affiliation(s)
- Heinrich F von Köller
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg, Germany.
| | - Finn J Geffers
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Pedram Kalvani
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg, Germany.
| | - Adrian Foraita
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Patrick-Eric J Loß
- Technische Universität Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Burkhard Butschke
- Albert-Ludwigs-Universität Freiburg, Institute of Inorganic and Analytical Chemistry, Albertstraße 21, 79104 Freiburg, Germany
| | - Peter G Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104 Freiburg, Germany.
| |
Collapse
|
10
|
Ansteatt S, Gelfand R, Pelton M, Ptaszek M. Geometry-Independent Ultrafast Energy Transfer in Bioinspired Arrays Containing Electronically Coupled BODIPY Dimers as Energy Donors. Chemistry 2023; 29:e202301571. [PMID: 37494565 DOI: 10.1002/chem.202301571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
In photosynthetic light-harvesting complexes, strong interaction between chromophores enables efficient absorption of solar radiation and has been suggested to enable ultrafast energy funneling to the reaction center. To examine whether similar effects can be realized in synthetic systems, and to determine the mechanisms of energy transfer, we synthesized and characterized a series of bioinspired arrays containing strongly-coupled BODIPY dimers as energy donors and chlorin derivatives as energy acceptors. The BODIPY dimers feature broad absorption in the range of 500-600 nm, complementing the chlorin absorption to provide absorption across the entire visible spectrum. Ultrafast (~10 ps) energy transfer was observed from photoexcited BODIPY dyads to chlorin subunits. Surprisingly, the energy-transfer rate is nearly independent of the position where the BODIPY dimer is attached to the chlorin and of the type of connecting linker. In addition, the energy-transfer rate from BODIPY dimers to chlorin is slower than the corresponding rate in arrays containing BODIPY monomers. The lower rate, corresponding to less efficient through-bond transfer, is most likely due to weaker electronic coupling between the ground state of the chlorin acceptor and the delocalized electronic state of the BODIPY dimer, compared to the localized state of a BODIPY monomer.
Collapse
Affiliation(s)
- Sara Ansteatt
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Rachel Gelfand
- Department of Physics, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Matthew Pelton
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
- Department of Physics, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
11
|
Pattadar D, Arcidiacono A, Beery D, Hanson K, Saavedra SS. Molecular Orientation and Energy Transfer Dynamics of a Metal Oxide Bound Self-Assembled Trilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10670-10679. [PMID: 37466635 DOI: 10.1021/acs.langmuir.3c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Self-assembly of molecular multilayers via metal ion linkages has become an important strategy for interfacial engineering of metalloid and metal oxide (MOx) substrates, with applications in numerous areas, including energy harvesting, catalysis, and chemical sensing. An important aspect for the rational design of these multilayers is knowledge of the molecular structure-function relationships. For example, in a multilayer composed of different chromophores in each layer, the molecular orientation of each layer, both relative to the adjacent layers and the substrate, influences the efficiency of vectorial energy and electron transfer. Here, we describe an approach using UV-vis attenuated total reflection (ATR) spectroscopy to determine the mean dipole tilt angle of chromophores in each layer in a metal ion-linked trilayer self-assembled on indium-tin oxide. To our knowledge, this is the first report demonstrating the measurement of the orientation of three different chromophores in a single assembly. The ATR approach allows the adsorption of each layer to be monitored in real-time, and any changes in the orientation of an underlying layer arising from the adsorption of an overlying layer can be detected. We also performed transient absorption spectroscopy to monitor interlayer energy transfer dynamics in order to relate structure to function. We found that near unity efficiency, sub-nanosecond energy transfer between the third and second layer was primarily dictated by the distance between the chromophores. Thus, in this case, the orientation had minimal impact at such proximity.
Collapse
Affiliation(s)
- Dhruba Pattadar
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Ashley Arcidiacono
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Drake Beery
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - S Scott Saavedra
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
12
|
Peng S, Shao G, Wang K, Chen X, Xu J, Wang H, Wu D, Xia J. Efficient Energy Transfer in a Rylene Imide-Based Heterodimer: The Role of Intramolecular Electronic Coupling. J Phys Chem Lett 2023; 14:3249-3257. [PMID: 36975134 DOI: 10.1021/acs.jpclett.3c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of antenna molecules with simplified structures can effectively avoid the complex exciton dynamics resulting from conformational mobility. Two distinct heterodimers TP and TBP comprising a perylenediimide (PDI) donor and terrylenediimide (TDI) acting as an energy sink were investigated. Tuned by varying functionalization positions, the bay-to-bay-linked TP offers a strong chromophore coupling, while the bay-to-N-linked TBP exhibits a weak chromophore coupling. Using transient absorption spectroscopy, we found that TP underwent ultrafast vibrational relaxation (τVR < 400 fs) from upper vibrational energy levels of the singlet states after pumping at 490 nm, and followed by electron transfer (ET, τET = 2.5 ps) from TDI to PDI. TBP exhibited ultrafast excitation energy transfer (EET, τEET = 0.48 ± 0.1 ps) from the excited PDI donor to TDI acceptor, and the subsequent charge transfer (CT) process was almost quenched. This result provides insight into designing novel small molecules capable of efficient energy transfer.
Collapse
Affiliation(s)
- Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Huan Wang
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Di Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
13
|
Gao J, Luan T, Lv J, Yang M, Li H, Yuan Z. An oxygen-carrying and lysosome-targeting BODIPY derivative for NIR bioimaging and enhanced multimodal therapy against hypoxic tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112666. [PMID: 36842340 DOI: 10.1016/j.jphotobiol.2023.112666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Cancer treatment modalities have gradually shifted from monotherapies to multimodal therapies. It is still a challenge to develop a synergistic chemo-phototherapy system with relieving tumor hypoxia, specific targeting, and real-time fluorescence tracking. In this study, we designed a multifunctional BODIPY derivative, FBD-M, for synergistic chemo-phototherapy against hypoxic tumors. FBD-M was composed of four parts: 1) The BODIPY fluorophore selected as a theranostic core, 2) A pentafluorobenzene group modified on meso-BODIPY to carry oxygen, 3) A morpholine group hooked to one side of BODIPY served as a lysosome-targeting unit for enhancing antitumor effect, and 4) An aromatic nitrogen mustard group introduced on other side of BODIPY to achieve chemotherapy. After introducing the morpholine and aromatic nitrogen mustard in BODIPY, the conjugate system of BODIPY was also expanded to realize near-infrared (NIR) phototherapy. Finally, FBD-M was obtained by a rational design, which possessed with NIR absorbance and emission, photosensitive activity, oxygen-carrying capability for relieving tumor hypoxia, high photothermal conversion efficiency, good photostability, lysosome targeting, low toxicity, and synergistic chemo-phototherapy against hypoxic tumors. FBD-M had been successfully applied for anticancer in vitro and in vivo. Our study demonstrates that FBD-M can serve as an ideal multifunctional theranostic agents.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China
| | - Tianjiao Luan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China
| | - Jiajia Lv
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China
| | - Mingyan Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China
| | - Hongyu Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China
| | - Zeli Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi, Guizhou 563003, PR China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, PR China; Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi, Guizhou 563003, PR China.
| |
Collapse
|
14
|
Miao W, Guo X, Yan X, Shang Y, Yu C, Dai E, Jiang T, Hao E, Jiao L. Red-to-Near-Infrared Emitting PyrrolylBODIPY Dyes: Synthesis, Photophysical Properties and Bioimaging Application. Chemistry 2023; 29:e202203832. [PMID: 36650103 DOI: 10.1002/chem.202203832] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Near-infrared (NIR) fluorophores with characteristics such as deep tissue penetration, minimal damage to the biological samples, and low background interference, are highly sought-after materials for in vivo and deep-tissue fluorescence imaging. Herein, series of 3-pyrrolylBODIPY derivatives and 3,5-dipyrrolylBODIPY derivatives have been prepared by a facile regioselective nucleophilic aromatic substitution reaction (SN Ar) on 3,5-halogenated BODIPY derivatives (3,5-dibromo or 2,3,5,6-tetrachloroBODIPYs) with pyrroles. The installation of a pyrrolic unit onto the 3-position of the BODIPY chromophore leads to a dramatic red shift of both the absorption (up to 160 nm) and the emission (up to 260 nm) in these resultant 3-pyrrolylBODIPYs with respect to that of the BODIPY chromophore. Their further 5-positional functionalization provides a facile way to fine tune their photophysical properties, and these resulting dipyrrolylBODIPYs and functionalized pyrrolylBODIPYs show strong absorption in the deep red-to-NIR regions (595-684 nm) and intense NIR fluorescence emission (650-715 nm) in dichloromethane. To demonstrate the applicability of these functionalized pyrrolylBODIPYs as NIR fluorescent probes for cell imaging, pyrrolylBODIPY 6 a containing mitochondrion-targeting butyltriphenylphosphonium cationic species was also prepared. It selectively localized in mitochondria of HeLa cells, with low cytotoxicity and intense deep red fluorescence emission.
Collapse
Affiliation(s)
- Wei Miao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China.,Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Xi Yan
- Department of Nuclear Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, CN 230022, P.R. China
| | - Yingjian Shang
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - En Dai
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Ting Jiang
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials The Key Laboratory of Functional Molecular Solids Ministry of Education School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, CN 241002, P.R. China
| |
Collapse
|
15
|
Wu K, Zheng Y, Chen R, Zhou Z, Liu S, Shen Y, Zhang Y. Advances in electrochemiluminescence luminophores based on small organic molecules for biosensing. Biosens Bioelectron 2023; 223:115031. [PMID: 36571992 DOI: 10.1016/j.bios.2022.115031] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Electrochemiluminescence (ECL) has several advantages, such as a near-zero background signal, high sensitivity, wide dynamic range, simplicity, and is widely used for sensing, imaging, and single cell analysis. ECL luminophores are the key factors in the performance of various applications. Among various luminophores, small organic luminophores exhibit many intriguing features including good biocompatibility, facile modification, well-defined molecular structure, and sustainable raw materials, making small organic luminophores attractive for the use in the ECL field. Although many great achievements have been made in the synthesis of new small organic luminophores, solving various challenges, and expanding new applications, there are almost no comprehensive reviews on small organic ECL luminophores. In this review, we briefly introduce the advantages and emission mechanisms of small organic ECL luminophores, summarize the main types, molecular characteristics, and ECL properties of most existing small organic ECL luminophores, and present the important applications and design principles in sensors, imaging, single cell analysis, sterilization, and other fields. Finally, the challenges and outlook of organic ECL luminophores to be popularized in biosensing applications are also discussed.
Collapse
Affiliation(s)
- Kaiqing Wu
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Ran Chen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Zhixin Zhou
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China.
| | - Songqin Liu
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
16
|
Wang Z, Guo X, Kang Z, Wu Q, Li H, Cheng C, Yu C, Jiao L, Hao E. Aryl-Boron-Substituted BODIPYs: Direct Access via Aluminum-Chloride-Mediated Arylation from Arylstannanes and Tuning the Optoelectronic Properties. Org Lett 2023; 25:744-749. [PMID: 36700834 DOI: 10.1021/acs.orglett.2c04184] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An efficient procedure is presented for functionalization of BODIPYs at boron with arylstannanes as weak nucleophiles in the presence of aluminum chloride, providing new aryl-boron-substituted BODIPY and aza-BODIPY derivatives of singular importance. Most of these aryl-boron-substituted BODIPYs showed bright emission in the aqueous solution with significant aggregation-induced emission enhancement and high solid-state emission as a result of the restricted rotation of the meso-phenyl group and boron-substituted aryl groups as well as the formation of J-type aggregates.
Collapse
Affiliation(s)
- Zhaoyun Wang
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Zhengxin Kang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, People's Republic of China
| | - Heng Li
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Cheng Cheng
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Changjiang Yu
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| |
Collapse
|
17
|
Gong Q, Zhang X, Li W, Guo X, Wu Q, Yu C, Jiao L, Xiao Y, Hao E. Long-Wavelength Photoconvertible Dimeric BODIPYs for Super-Resolution Single-Molecule Localization Imaging in Near-Infrared Emission. J Am Chem Soc 2022; 144:21992-21999. [PMID: 36414278 DOI: 10.1021/jacs.2c08947] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sulfoxide-bridged dimeric BODIPYs were developed as a new class of long-wavelength photoconvertible fluorophores. Upon visible-light irradiation, a sulfoxide moiety was released to generate the corresponding α,α-directly linked dimeric BODIPYs. The extrusion of SO from sulfoxides was mainly through an intramolecular fashion involving reactive triplet states. By this photoconversion, not only were more than 100 nm red shifts of absorption and emission maxima (up to 648/714 nm) achieved but also stable products with bright fluorescence were produced with high efficiency. The combination of photoactivation and red-shifted excitation/emission offered optimal contrast and eliminated the interference from biological autofluorescence. More importantly, the in situ products of these visible-light-induced reactions demonstrated ideal single-molecule fluorescence properties in the near-infrared region. Therefore, this new photoconversion could be a powerful photoactivation method achieving super-resolution single-molecule localization imaging in a living cell without using UV illumination and cell-toxic additives.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
18
|
Feng Y, Zhou J, Qiu H, Schnitzlein M, Hu J, Liu L, Würthner F, Xie Z. Boron-Locked Starazine - A Soluble and Fluorescent Analogue of Starphene. Chemistry 2022; 28:e202200770. [PMID: 35388924 PMCID: PMC9325424 DOI: 10.1002/chem.202200770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/26/2022]
Abstract
A starlike heterocyclic molecule containing an electron‐deficient nonaaza‐core structure and three peripheral isoquinolines locked by three tetracoordinate borons, namely isoquinoline‐nona‐starazine (QNSA), is synthesized by using readily available reactants through a rather straightforward approach. This new heteroatom‐rich QNSA possesses a quasi‐planar π‐backbone structure, and bears phenyl substituents on borons which protrude on both sides of the π‐backbones endowing it with good solubility in common organic solvents. Contrasting to its starphene analogue, QNSA shows intense fluorescence with a quantum yield (PLQY) of up to 62 % in dilute solution.
Collapse
Affiliation(s)
- Yi Feng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Honglin Qiu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Matthias Schnitzlein
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jingtao Hu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology (SCUT), 510640, Guangzhou, P. R. China
| |
Collapse
|
19
|
Portwich FL, Carstensen Y, Dasgupta A, Kupfer S, Wyrwa R, Görls H, Eggeling C, Dietzek B, Gräfe S, Wächtler M, Kretschmer R. A Highly Fluorescent Dinuclear Aluminium Complex with Near-Unity Quantum Yield. Angew Chem Int Ed Engl 2022; 61:e202117499. [PMID: 35107199 PMCID: PMC9313782 DOI: 10.1002/anie.202117499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/06/2022]
Abstract
The high natural abundance of aluminium makes the respective fluorophores attractive for various optical applications, but photoluminescence quantum yields above 0.7 have yet not been reported for solutions of aluminium complexes. In this contribution, a dinuclear aluminium(III) complex featuring enhanced photoluminescence properties is described. Its facile one-pot synthesis originates from a readily available precursor and trimethyl aluminium. In solution, the complex exhibits an unprecedented photoluminescence quantum yield near unity (Φabsolute 1.0±0.1) and an excited-state lifetime of 2.3 ns. In the solid state, J-aggregation and aggregation-caused quenching are noted, but still quantum yields of 0.6 are observed. Embedding the complex in electrospun non-woven fabrics yields a highly fluorescent fleece possessing a quantum yield of 0.9±0.04.
Collapse
Affiliation(s)
- Flavio L. Portwich
- Institute of Inorganic and Analytical Chemistry (IAAC)Friedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Yves Carstensen
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Anindita Dasgupta
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Institute of Applied Optics and BiophysicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Stephan Kupfer
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Ralf Wyrwa
- INNOVENT e. V. Technologieentwicklung JenaPrüssingstraße 27 B07745JenaGermany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry (IAAC)Friedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Christian Eggeling
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Institute of Applied Optics and BiophysicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Abbe Center of PhotonicsFriedrich Schiller University JenaAlbert-Einstein-Straße 607745JenaGermany
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordOX39DSUK
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| | - Benjamin Dietzek
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Abbe Center of PhotonicsFriedrich Schiller University JenaAlbert-Einstein-Straße 607745JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| | - Stefanie Gräfe
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Abbe Center of PhotonicsFriedrich Schiller University JenaAlbert-Einstein-Straße 607745JenaGermany
- Fraunhofer Institute for Applied Optics and Precision Engineering (Fraunhofer IOF)Albert-Einstein-Str. 707745JenaGermany
| | - Maria Wächtler
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Abbe Center of PhotonicsFriedrich Schiller University JenaAlbert-Einstein-Straße 607745JenaGermany
| | - Robert Kretschmer
- Institute of Inorganic and Analytical Chemistry (IAAC)Friedrich Schiller University JenaHumboldtstraße 807743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| |
Collapse
|
20
|
Chang HJ, Bondar MV, Munera N, David S, Maury O, Berginc G, Le Guennic B, Jacquemin D, Andraud C, Hagan DJ, Van Stryland EW. Femtosecond Spectroscopy and Nonlinear Optical Properties of aza-BODIPY Derivatives in Solution. Chemistry 2022; 28:e202104072. [PMID: 35157336 DOI: 10.1002/chem.202104072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 01/22/2023]
Abstract
The fast relaxation processes in the excited electronic states of functionalized aza-boron-dipyrromethene (aza-BODIPY) derivatives (1-4) were investigated in liquid media at room temperature, including the linear photophysical, photochemical, and nonlinear optical (NLO) properties. Optical gain was revealed for nonfluorescent derivatives 3 and 4 in the near infrared (NIR) spectral range under femtosecond excitation. The values of two-photon absorption (2PA) and excited-state absorption (ESA) cross-sections were obtained for 1-4 in dichloromethane using femtosecond Z-scans, and the role of bromine substituents in the molecular structures of 2 and 4 is discussed. The nature of the excited states involved in electronic transitions of these dyes was investigated using quantum-chemical TD-DFT calculations, and the obtained spectral parameters are in reasonable agreement with the experimental data. Significant 2PA (maxima cross-sections ∼2000 GM), and large ESA cross-sections ∼10-20 m2 of these new aza-BODIPY derivatives 1-4 along with their measured high photostability reveal their potential for photonic applications in general and optical limiting in particular.
Collapse
Affiliation(s)
- Hao-Jung Chang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Mykhailo V Bondar
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA.,Institute of Physics NASU, Prospect Nauki, 46, Kyiv-28, 03028, Ukraine
| | - Natalia Munera
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Sylvain David
- Univ. Lyon, ENS Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 Allée d'Italie, 69364, Lyon, France
| | - Olivier Maury
- Univ. Lyon, ENS Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 Allée d'Italie, 69364, Lyon, France
| | - Gerard Berginc
- Thales LAS France, 2 Avenue Gay Lussac, 78990, Élancourt, France
| | - Boris Le Guennic
- CNRS, Institut des Sciences Chimiques de Rennes UMR 6266, Université Rennes, 35000, Rennes, France
| | | | - Chantal Andraud
- Univ. Lyon, ENS Lyon, CNRS UMR 5182, Laboratoire de Chimie, 46 Allée d'Italie, 69364, Lyon, France
| | - David J Hagan
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| | - Eric W Van Stryland
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
21
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
22
|
Ein stark fluoreszierender zweikerniger Aluminiumkomplex mit nahezu 100 %iger Quantenausbeute**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Fanciullo G, Conti I, Didier P, Klymchenko A, Léonard J, Garavelli M, Rivalta I. Modelling quenching mechanisms of disordered molecular systems in the presence of molecular aggregates. Phys Chem Chem Phys 2022; 24:1787-1794. [PMID: 34985481 DOI: 10.1039/d1cp04260b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exciton density dynamics recorded in time-resolved spectroscopic measurements is a useful tool to recover information on energy transfer (ET) processes that can occur at different timescales, up to the ultrafast regime. Macroscopic models of exciton density decays, involving both direct Förster-like ET and diffusion mechanisms for exciton-exciton annihilation, are largely used to fit time-resolved experimental data but generally neglect contributions from molecular aggregates that can work as quenching species. In this work, we introduce a macroscopic model that includes contributions from molecular aggregate quenchers in a disordered molecular system. As an exemplifying case, we considered a homogenous distribution of rhodamine B dyes embedded in organic nanoparticles to set the initial parameters of the proposed model. The influence of such model parameters is systematically analysed, showing that the presence of molecular aggregate quenchers can be monitored by evaluating the exciton density long time decays. We showed that the proposed model can be applied to molecular systems with ultrafast decays, and we anticipated that it could be used in future studies for global fitting of experimental data with potential support from first-principles simulations.
Collapse
Affiliation(s)
- Giacomo Fanciullo
- Dipartimento di Chimica Industriale "Toso Montanari", ALMA MATER STUDIORUM, Università di Bologna, Viale del Risorgimento 4, 40126 Bologna, Italy.
| | - Irene Conti
- Dipartimento di Chimica Industriale "Toso Montanari", ALMA MATER STUDIORUM, Università di Bologna, Viale del Risorgimento 4, 40126 Bologna, Italy.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Andrey Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Jérémie Léonard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000 Strasbourg, France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", ALMA MATER STUDIORUM, Università di Bologna, Viale del Risorgimento 4, 40126 Bologna, Italy.
| | - Ivan Rivalta
- Dipartimento di Chimica Industriale "Toso Montanari", ALMA MATER STUDIORUM, Università di Bologna, Viale del Risorgimento 4, 40126 Bologna, Italy. .,Université de Lyon, École Normale Supérieure de Lyon, Université Lyon 1, CNRS UMR 5182, Laboratoire de Chimie, 46 Allée d'Italie, F69364 Lyon, France
| |
Collapse
|
24
|
Yu T, Zhang D, Wang J, Sun CL, Cui T, Xu Z, Jiang XD, Du J. Near-infared upper phenyl-fused BODIPY as photosensitizer for photothermal-photodynamic therapy. J Mater Chem B 2022; 10:3048-3054. [DOI: 10.1039/d2tb00012a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BODIPY scaffolds by introducing ring-fused segment promoted bathochromic-shift spectrum and enhanced intersystem crossing capability by a twisted structure. In this work, we designed the upper phenyl-fused BODIPY with 4-dimethylaminostyryl groups...
Collapse
|
25
|
Zhu Z, Zhang X, Guo X, Wu Q, Li Z, Yu C, Hao E, Jiao L, Zhao J. Orthogonally aligned cyclic BODIPY arrays with long-lived triplet excited states as efficient heavy-atom-free photosensitizers. Chem Sci 2021; 12:14944-14951. [PMID: 34820111 PMCID: PMC8597848 DOI: 10.1039/d1sc04893g] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
In photosensitizers, long triplet excited state lifetimes are key to their efficient electron transfer or energy transfer processes. Herein, we report a novel class of cyclic trimeric BODIPY arrays which were efficiently generated from easily accessible meso-mesityldipyrrinone and arylboronic acids in one pot. Arylboronic acid, for the first time, was used to provide a boron source for BODIPY derivatives. Due to the well-defined and orthogonally aligned BODIPY cores as verified by X-ray crystallography, these BODIPY arrays show strong exciton coupling effects and efficient intersystem crossings, and are novel heavy-atom-free photosensitizers with a long-lived triplet excited state (lifetime up to 257.5 μs) and good reactive oxygen species generation efficiency (up to 0.72) contributed by both 1O2 and O2 -˙ under light irradiation.
Collapse
Affiliation(s)
- Zhaoyang Zhu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Xing Guo
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Qinghua Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Zhongxin Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Changjiang Yu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Erhong Hao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Lijuan Jiao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
26
|
Gong Q, Cheng K, Wu Q, Li W, Yu C, Jiao L, Hao E. One-Pot Access to Ethylene-Bridged BODIPY Dimers and Trimers through Single-Electron Transfer Chemistry. J Org Chem 2021; 86:15761-15767. [PMID: 34590860 DOI: 10.1021/acs.joc.1c01824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Cu(I)-promoted oxidative dimerization of BODIPY dyes was developed to give a series of α,α- ethylene-bridged BODIPY dimers and trimers for the first time. This methodology does not need harsh conditions but relies on the singlet-electron-transfer process between alkylated BODIPYs and Cu(I) salt to generate BODIPY-based radical species, which undergo a selective radical homocoupling reaction. Moreover, these resultant dimers and trimers showed high attenuation coefficients, small line widths of the absorption and emission, and intense fluorescence.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Kai Cheng
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
27
|
Trapani M, Castriciano MA, Collini E, Bella G, Cordaro M. Supramolecular BODIPY based dimers: synthesis, computational and spectroscopic studies. Org Biomol Chem 2021; 19:8118-8127. [PMID: 34473180 DOI: 10.1039/d1ob01433a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic procedures for the preparation of supramolecular BODIPY dimers decorated with complementary patterns able to induce the formation of a triple hydrogen bond through mutual interactions are here reported. The BODIPY and styryl-equipped BODIPY species have been suitably functionalized in meso position with 2,6-diacetamido-4-pyridyl and 1-butyl-6-uracyl moieties. Dimers and monomers have been subjected to computational and photophysical investigations in solvent media. Various peculiarities concerning the effects of the interaction geometry on the stability of the H-bonded systems have also been investigated. The combination of modelling and experimental data provides a paradigm for improving and refining the BODIPY synthetic pathway to have chromophoric architectures with a programmable supramolecular identity. Furthermore, the possibility of assembling dimers of different dyes through H-bonds could be appealing for a systematic investigation of the principal factors affecting the dynamics of the energy migration and possibly driving coherent transfer mechanisms. Our work highlights how the chemical versatility of these dyes can be exploited to design new BODIPY-based supramolecular architectures.
Collapse
Affiliation(s)
- Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166, University of Messina, Messina, Italy
| | - Maria Angela Castriciano
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166, University of Messina, Messina, Italy
| | - Elisabetta Collini
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Giovanni Bella
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166, University of Messina, Messina, Italy.
| | - Massimiliano Cordaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166, University of Messina, Messina, Italy.
| |
Collapse
|