1
|
Jafari MG, Russell JB, Myung H, Kwon S, Carroll PJ, Gau MR, Baik MH, Mindiola DJ. Pnictogen-based vanadacyclobutadiene complexes. Chem Sci 2024; 15:19752-19763. [PMID: 39568904 PMCID: PMC11575583 DOI: 10.1039/d4sc05884d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024] Open
Abstract
The reactivity of the V[triple bond, length as m-dash]C t Bu multiple bonds in the complex (dBDI)V[triple bond, length as m-dash]C t Bu(OEt2) (C) (dBDI2- = ArNC(CH3)CHC(CH2)NAr, Ar = 2,6- i Pr2C6H3) with unsaturated substrates such as N[triple bond, length as m-dash]CR (R = Ad or Ph) and P[triple bond, length as m-dash]CAd leads to the formation of rare 3d transition metal compounds featuring α-aza-vanadacyclobutadiene, (dBDI)V(κ2- C , N - t BuCC(R)N) (R = Ad, 1; R = Ph, 2) and β-phospha-vanadacyclobutadiene moieties, (dBDI)V(κ2- C , C - t BuCPCAd) (3). Complexes 1-3 are characterized using multinuclear and multidimensional NMR spectroscopy, including the preparation of the 50% 15N-enriched isotopologue (dBDI)V(κ2- C , N - t BuCC(Ad)15N) (1-15N). Solid-state structural analysis is used to determine the dominant resonance structures of these unique pnictogen-based vanadacyclobutadienes. A systematic comparison with the known vanadacyclobutadiene (dBDI)V(κ2- C , C - t BuCC(H)C t Bu) (4) is also presented. Theoretical investigations into the electronic structure of 2-4 highlight the crucial role of unique V-heteroatom interactions in stabilizing the vanadacyclobutadienes and identify the most dominant resonance structures.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - John B Russell
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Hwan Myung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seongyeon Kwon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
2
|
Cui M, Huang J, Tsang LY, Sung HHY, Williams ID, Jia G. Exploring efficient and air-stable d 2 Re(v) alkylidyne catalysts: toward room temperature alkyne metathesis. Chem Sci 2024:d4sc05369a. [PMID: 39464615 PMCID: PMC11499950 DOI: 10.1039/d4sc05369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
Transition metal-catalyzed alkyne metathesis has become a useful tool in synthetic chemistry. Well-defined alkyne metathesis catalysts comprise alkylidyne complexes of tungsten, molybdenum and rhenium. Non-d0 Re(v) alkylidyne catalysts exhibit advantages such as remarkable tolerance to air and moisture as well as excellent functional group compatibility. However, the known Re(v) alkylidynes with a pyridine leaving ligand require harsh conditions for activation, resulting in lower catalytic efficiency compared to d0 Mo(vi) and W(vi) alkylidynes. Herein, we report the first non-d0 alkylidyne complex capable of mediating alkyne metathesis at room temperature, namely, the Re(v) aqua alkylidyne complex Re([triple bond, length as m-dash]CCH2Ph)( Ph PO)2(H2O) (14). The aqua complex readily dissociates a water ligand in solution, confirmed by ligand substitution reactions with other σ-donor ligands. The aqua complex can be readily prepared on a large scale, and is stable to air and moisture in the solid state and compatible with a variety of functional groups. The versatile ability of the catalyst has been demonstrated through examples of alkyne cross-metathesis (ACM), ring-closing alkyne metathesis (RCAM), and acyclic diyne metathesis macrocyclization (ADIMAC) reactions. All in all, this work presents a solution for an efficient and air-stable alkyne metathesis catalytic system based on d2 Re(v)-alkylidynes.
Collapse
Affiliation(s)
- Mingxu Cui
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
| | - Jie Huang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
| | - Long Yiu Tsang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
| | - Herman H Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong P. R. China
- HKUST Shenzhen Research Institute 518057 Shenzhen P. R. China
| |
Collapse
|
3
|
Cai Y, Hua Y, Lu Z, Chen J, Chen D, Xia H. Metallacyclobutadienes: Intramolecular Rearrangement from Kinetic to Thermodynamic Isomers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403940. [PMID: 39104029 PMCID: PMC11481178 DOI: 10.1002/advs.202403940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/02/2024] [Indexed: 08/07/2024]
Abstract
Metallacyclobutadienes (MCBDs) are key intermediates of alkyne metathesis reactions. There are in principle two isomerization pathway from kinetic to thermodynamic MCBDs, intermolecular and intramolecular. However, systems that simultaneously isolate two kinds of MCBD isomers have not been achieved, thus restricting the mechanistic studies of the isomerization. Here the reactivity of a metallapentalyne that contains an M≡C bond within the aromatic ring, with alkynes to afford a series of MCBD-fused metallapentalenes is studied. In some cases, both kinetic and thermodynamic products are isolated in the same system, which has never been observed in previous MCBD reactions. Furthermore, the isomerization of MCBD-fused metallapentalenes is investigated both experimentally and theoretically, indicating that it is an intramolecular process involving a metallatetrahedrane (MTd) intermediate. This research provides experimental evidence demonstrating that one MCBD can undergo intramolecular rearrangement to transform into another.
Collapse
Affiliation(s)
- Yuanting Cai
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Yuhui Hua
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| | - Jiangxi Chen
- Department of Materials Science and EngineeringCollege of MaterialsXiamen UniversityXiamen361005China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| | - Haiping Xia
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and TechnologyShenzhen518005China
| |
Collapse
|
4
|
Rütter D, van Gastel M, Leutzsch M, Nöthling N, SantaLucia D, Neese F, Fürstner A. Molybdenum(VI) Nitrido Complexes with Tripodal Silanolate Ligands. Structure and Electronic Character of an Unsymmetrical Dimolybdenum μ-Nitrido Complex Formed by Incomplete Nitrogen Atom Transfer. Inorg Chem 2024; 63:8376-8389. [PMID: 38663089 PMCID: PMC11080062 DOI: 10.1021/acs.inorgchem.4c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
In contrast to a tungsten nitrido complex endowed with a tripodal silanolate ligand framework, which was reported in the literature to be a dimeric species with a metallacyclic core, the corresponding molybdenum nitrides 3 are monomeric entities comprising a regular terminal nitride unit, as proven by single-crystal X-ray diffraction (SC-XRD). Their electronic character is largely determined by the constraints imposed on the metal center by the podand ligand architecture. 95Mo nuclear magnetic resonance (NMR) and, to a lesser extent, 14N NMR spectroscopy allow these effects to be studied, which become particularly apparent upon comparison with the spectral data of related molybdenum nitrides comprising unrestrained silanolate, alkoxide, or amide ligands. Attempted nitrogen atom transfer from these novel terminal nitrides to [(tBuArN)3Mo] (Ar = 3,5-dimethylphenyl) as the potential acceptor stopped at the stage of unsymmetric dimolybdenum μ-nitrido complex 13a as the first intermediate along the reaction pathway. SC-XRD, NMR, electron paramagnetic resonance, and ultraviolet-visible spectroscopy as well as magnetometry in combination with density functional theory allowed a clear picture of the geometric and electronic structure of this mixed-valent species to be drawn. 13a is formally best described as an adduct of the type [(Mo[O])+III-(μN)-III-(Mo[N])+VI], S = 1/2 complex with (Mo[O])+III in the low-spin configuration, whereas related complexes such as [(AdS)3Mo-(μN)-Mo(NtBuAr)3] (19; Ad = 1-adamantyl) have previously been regarded in the literature as mixed-valent Mo+IV/Mo+V species. The spin population at the two Mo centers is uneven and notably larger at the more reduced Mo[O] atom, whereas the only spin present at the (μN) bridge is derived from spin polarization.
Collapse
Affiliation(s)
- Daniel Rütter
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | | | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Nils Nöthling
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Daniel SantaLucia
- Max-Planck-Institut
für Chemische Energiekonversion, 45470 Mülheim/Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
5
|
Tomasini M, Gimferrer M, Caporaso L, Poater A. Rhenium Alkyne Catalysis: Sterics Control the Reactivity. Inorg Chem 2024; 63:5842-5851. [PMID: 38507560 PMCID: PMC10988556 DOI: 10.1021/acs.inorgchem.3c04235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Metathesis reactions, including alkane, alkene, and alkyne metatheses, have their origins in the fundamental understanding of chemical reactions and the development of specialized catalysts. These reactions stand as transformative pillars in organic chemistry, providing efficient rearrangement of carbon-carbon bonds and enabling synthetic access to diverse and complex compounds. Their impact spans industries such as petrochemicals, pharmaceuticals, and materials science. In this work, we present a detailed mechanistic study of the Re(V) catalyzed alkyne metathesis through density functional theory calculations. Our findings are in agreement with the experimental evidence from Jia and co-workers and unveil critical factors governing catalyst performance. Our work not only enhances our understanding of alkyne metathesis but also contributes to the broader landscape of catalytic processes, facilitating the design of more efficient and selective transformations in organic synthesis.
Collapse
Affiliation(s)
- Michele Tomasini
- Institut
de Química Computacional i Catàlisi, Departament de
Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
- Dipartimento
di Chimica e Biologia, Università
di Salerno, Via Ponte
don Melillo, Fisciano 84084, Italy
| | - Martí Gimferrer
- Institut
für Physikalische Chemie, Georg-August
Universität Göttingen, Tammannstraße 6, Göttingen 37077, Germany
| | - Lucia Caporaso
- Dipartimento
di Chimica e Biologia, Università
di Salerno, Via Ponte
don Melillo, Fisciano 84084, Italy
- CIRCC, Interuniversity Consortium Chemical Reactivity and Catalysis, via Celso Ulpiani 27, Bari 70126, Italy
| | - Albert Poater
- Institut
de Química Computacional i Catàlisi, Departament de
Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| |
Collapse
|
6
|
Korber JN, Wille C, Leutzsch M, Fürstner A. From the Glovebox to the Benchtop: Air-Stable High Performance Molybdenum Alkylidyne Catalysts for Alkyne Metathesis. J Am Chem Soc 2023; 145:26993-27009. [PMID: 38032858 PMCID: PMC10722517 DOI: 10.1021/jacs.3c10430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Molybdenum alkylidynes endowed with tripodal silanolate ligands belong to the most active and selective catalysts for alkyne metathesis known to date. This paper describes a new generation that is distinguished by an unprecedented level of stability and practicality without sacrificing the chemical virtues of their predecessors. Specifically, pyridine adducts of type 16 are easy to make on gram scale, can be routinely weighed and handled in air, and stay intact for many months outside the glovebox. When dissolved in toluene, however, spontaneous dissociation of the stabilizing pyridine ligand releases an active species of excellent performance and functional group tolerance. Specifically, a host of polar and apolar groups, various protic sites, and numerous basic functionalities proved compatible. The catalysts are characterized by crystallographic and spectroscopic means, including 95Mo NMR; their activity and stability are benchmarked in detail, and the enabling properties are illustrated by advanced applications to natural product synthesis. For the favorable overall application profile and ease of handling, complexes of this new series are expected to replace earlier catalyst generations and help encourage a more regular use of alkyne metathesis in general.
Collapse
Affiliation(s)
- J. Nepomuk Korber
- Max-Planck-Institut
für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Christian Wille
- Max-Planck-Institut
für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut
für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
7
|
Mishra D, Rajkhowa S, Phukan P. Unanticipated switch of reactivity of isonitrile via N≡C bond scission: Cascade formation of symmetrical sulfonyl guanidine. iScience 2023; 26:107258. [PMID: 37520733 PMCID: PMC10384224 DOI: 10.1016/j.isci.2023.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Unanticipated formation of symmetrical sulfonyl guanidine was observed while treating isonitriles with N,N-dibromoarylsulfonamides in absence of an external amine source. Interesting feature of this work is that one molecule of isonitrile initially reacts with dibromoarylsulfonamide via the C-end to produce the intermediate carbodiimide while the other molecule undergoes C≡N triple bond cleavage to react as amine source with the intermediate. This switch of reactivity from C-center to N-center of the isonitrile generated symmetrical guanidine.
Collapse
Affiliation(s)
- Debashish Mishra
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| | - Sagarika Rajkhowa
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| | - Prodeep Phukan
- Department of Chemistry, Gauhati University, Guwahati, Assam 781014, India
| |
Collapse
|
8
|
Dalling AG, Späth G, Fürstner A. Total Synthesis of the Tetracyclic Pyridinium Alkaloid epi-Tetradehydrohalicyclamine B. Angew Chem Int Ed Engl 2022; 61:e202209651. [PMID: 35971850 PMCID: PMC9826155 DOI: 10.1002/anie.202209651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 01/11/2023]
Abstract
The first total synthesis of a tetracyclic marine pyridinium alkaloid hinged on recent advances in chemoselectivity management: While many classical methods failed to afford the perceptively simple pyridine-containing core of the target, nickel/iridium photoredox dual catalysis allowed the critical C-C bond to be formed in good yield. Likewise, ring closing alkyne metathesis (RCAM) worked well in the presence of the unhindered pyridine despite the innately Lewis acidic Mo(+6) center of the alkylidyne catalyst. Finally, an iridium catalyzed hydrosilylation was uniquely effective in reducing a tertiary amide without compromising an adjacent pyridine and the lateral double bonds; this transformation is largely without precedent. The second strained macrocycle enveloping the core was closed by intramolecular N-alkylation with formation of the pyridinium unit; the reaction proceeded site- and chemoselectively in the presence of an a priori more basic tertiary amine.
Collapse
Affiliation(s)
| | - Georg Späth
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim/RuhrGermany
| |
Collapse
|
9
|
Zhu QH, Zhang L, Zhang GH, Tao GH, Qin S, Chen H, Yuan WL, Wang YH, Jin Y, Ma L, He L, Zhang W. Promoting productive metathesis pathway and tuning activity of multidentate molybdenum catalysts in alkyne metathesis: A theoretical perspective. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Dalling AG, Späth G, Fürstner A. Total Synthesis of the Tetracyclic Pyridinium Alkaloid epi‐Tetradehydrohalicyclamine B. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew G. Dalling
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry GERMANY
| | - Georg Späth
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry GERMANY
| | - Alois Fürstner
- Max-Planck-Institut fur Kohlenforschung Organometallic Chemistry Kaiser-Wilhelm-Platz 1 45470 Mülheim/Ruhr GERMANY
| |
Collapse
|
11
|
Berkson ZJ, Lätsch L, Hillenbrand J, Fürstner A, Copéret C. Classifying and Understanding the Reactivities of Mo-Based Alkyne Metathesis Catalysts from 95Mo NMR Chemical Shift Descriptors. J Am Chem Soc 2022; 144:15020-15025. [PMID: 35969854 DOI: 10.1021/jacs.2c06252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most active alkyne metathesis catalysts rely on well-defined Mo alkylidynes, X3Mo≡CR (X = OR), in particular the recently developed canopy catalyst family bearing silanolate ligand sets. Recent efforts to understand catalyst reactivity patterns have shown that NMR chemical shifts are powerful descriptors, though previous studies have mostly focused on ligand-based NMR descriptors. Here, we show in the context of alkyne metathesis that 95Mo chemical shift tensors encode detailed information on the electronic structure of these catalysts. Analysis by first-principles calculations of 95Mo chemical shift tensors extracted from solid-state 95Mo NMR spectra shows a direct link of chemical shift values with the energies of the HOMO and LUMO, two molecular orbitals involved in the key [2 + 2]-cycloaddition step, thus linking 95Mo chemical shifts to reactivity. In particular, the 95Mo chemical shifts are driven by ligand electronegativity (σ-donation) and electron delocalization through Mo-O π interactions, thus explaining the reactivity patterns of the silanolate canopy catalysts. These results further motivate exploration of transition metal NMR signatures and their relationships to electronic structure and reactivity.
Collapse
Affiliation(s)
- Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Lukas Lätsch
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| | | | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
12
|
Cui M, Jia G. Organometallic Chemistry of Transition Metal Alkylidyne Complexes Centered at Metathesis Reactions. J Am Chem Soc 2022; 144:12546-12566. [PMID: 35793547 DOI: 10.1021/jacs.2c01192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition metals form a variety of alkylidyne complexes with either a d0 metal center (high-valent) or a non-d0 metal center (low-valent). One of the most interesting properties of alkylidyne complexes is that they can undergo or mediate metathesis reactions. The most well-studied metathesis reactions are alkyne metathesis involving high-valent alkylidynes. High-valent alkylidynes can also undergo metathesis reactions with heterotriple bonded species such as N≡CR, P≡CR, and N≡NR+. Metathesis reactions involving low-valent alkylidynes are less known. Highly efficient alkyne metathesis catalysts have been developed based on Mo(VI) and W(VI) alkylidynes. Catalytic cross-metathesis of nitriles with alkynes has also been achieved with M(VI) (M = W, Mo) alkylidyne or nitrido complexes. The metathesis activity of alkylidyne complexes is sensitively dependent on metals, supporting ligands and substituents of alkylidynes. Beyond metathesis, metal alkylidynes can also promote other reactions including alkyne polymerization. The remaining shortcomings and opportunities in the field are assessed.
Collapse
Affiliation(s)
- Mingxu Cui
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, SAR, Hong Kong, China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, SAR, Hong Kong, China.,HKUST Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
13
|
Greenlee AJ, Chen H, Wendell CI, Moore JS. Tandem Imine Formation and Alkyne Metathesis Enabled by Catalyst Choice. J Org Chem 2022; 87:8429-8436. [PMID: 35678630 DOI: 10.1021/acs.joc.2c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three-rung molecular ladder 8 was prepared in one pot via tandem imine condensation and alkyne metathesis. Catalyst VI is demonstrated to successfully engender the metathesis of imine-bearing substrate 7, while catalyst III does not. The susceptibility of catalyst VI to deactivation by hydrolysis and ligand exchange is demonstrated. Assembly and disassembly of ladder 8 in one pot were demonstrated in the presence and absence of a Lewis acid catalyst.
Collapse
Affiliation(s)
- Andrew J Greenlee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Heyu Chen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chloe I Wendell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Wei W, Sung HHY, Williams ID, Jia G. Reactions of Alkyl‐Substituted Rhenacyclobutadiene Complexes with Electron‐Rich Alkynes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Wei
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Herman H. Y. Sung
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Ian D. Williams
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| | - Guochen Jia
- Department of Chemistry Hong Kong University of Science and Technology Clear Water Bay Hong Kong China
| |
Collapse
|
15
|
Groos J, Koy M, Musso J, Neuwirt M, Pham T, Hauser PM, Frey W, Buchmeiser MR. Ligand Variations in Neutral and Cationic Molybdenum Alkylidyne NHC Catalysts. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Cui M, Sung HHY, Williams ID, Jia G. Alkyne Metathesis with d 2 Re(V) Alkylidyne Complexes Supported by Phosphino-Phenolates: Ligand Effect on Catalytic Activity and Applications in Ring-Closing Alkyne Metathesis. J Am Chem Soc 2022; 144:6349-6360. [PMID: 35377156 DOI: 10.1021/jacs.2c00368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A family of d2 Re(V) alkylidyne complexes bearing two decorated phosphino-phenolates (POs) and a labile pyridine ligand were prepared that can efficiently promote alkyne metathesis reactions in toluene. The relative activity of these complexes varies with the PO ligands. Complexes with an electron-rich metal center have a higher activity. Ligand exchange experiments suggest that the pyridine ligands of the Re(V) alkylidynes with more electron-donating PO ligands are more labile and are more easily released to generate catalytically active species. However, complexes with electron-withdrawing PO ligands are more air-stable than those with electron-donating PO ligands. These Re(V) alkylidyne catalysts can promote the homometathesis of functionalized internal alkyl- and aryl-alkynes, as well as ring-closing alkyne metathesis (RCAM) of methyl-capped diynes, forming macrocycles with a ring size ≥12 efficiently for concentrations ≤5 mM. These reactions represent the first examples of RCAM mediated by non-d0 alkylidyne complexes. The Re(V) alkylidyne catalysts tolerate a wide range of functional groups including ethers, esters, ketones, aldehydes, alcohols, phenols, amines, amides, and heterocycles. Moreover, the catalytic RCAM reactions promoted by robust Re(V) alkylidyne catalysts could also proceed normally in wet toluene.
Collapse
Affiliation(s)
- Mingxu Cui
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR 000000, China
| | - Herman H Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR 000000, China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR 000000, China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, SAR 000000, China.,HKUST Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
17
|
Ge Y, Hu Y, Duan G, Jin Y, Zhang W. Advances and challenges in user-friendly alkyne metathesis catalysts. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Wei W, Xu X, Lee KH, Lin R, Sung HHY, Williams ID, Lin Z, Jia G. Reactions of Rhenacyclobutadiene Complexes with Allenes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Wei
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Xin Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ka-Ho Lee
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ran Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Herman H. Y. Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Ian D. Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 0000, People’s Republic of China
| |
Collapse
|
19
|
Hillenbrand J, Korber JN, Leutzsch M, Nöthling N, Fürstner A. Canopy Catalysts for Alkyne Metathesis: Investigations into a Bimolecular Decomposition Pathway and the Stability of the Podand Cap. Chemistry 2021; 27:14025-14033. [PMID: 34293239 PMCID: PMC8518412 DOI: 10.1002/chem.202102080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Molybdenum alkylidyne complexes with a trisilanolate podand ligand framework ("canopy catalysts") are the arguably most selective catalysts for alkyne metathesis known to date. Among them, complex 1 a endowed with a fence of lateral methyl substituents on the silicon linkers is the most reactive, although fairly high loadings are required in certain applications. It is now shown that this catalyst decomposes readily via a bimolecular pathway that engages the Mo≡CR entities in a stoichiometric triple-bond metathesis event to furnish RC≡CR and the corresponding dinuclear complex, 8, with a Mo≡Mo core. In addition to the regular analytical techniques, 95 Mo NMR was used to confirm this unusual outcome. This rapid degradation mechanism is largely avoided by increasing the size of the peripheral substituents on silicon, without unduly compromising the activity of the resulting complexes. When chemically challenged, however, canopy catalysts can open the apparently somewhat strained tripodal ligand cages; this reorganization leads to the formation of cyclo-tetrameric arrays composed of four metal alkylidyne units linked together via one silanol arm of the ligand backbone. The analogous tungsten alkylidyne complex 6, endowed with a tripodal tris-alkoxide (rather than siloxide) ligand framework, is even more susceptible to such a controlled and reversible cyclo-oligomerization. The structures of the resulting giant macrocyclic ensembles were established by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Julius Hillenbrand
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - J. Nepomuk Korber
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - Nils Nöthling
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung45470Mülheim an der RuhrMülheim/RuhrGermany
| |
Collapse
|
20
|
Abstract
![]()
For numerous enabling features and strategic virtues, contemporary
alkyne metathesis is increasingly recognized as a formidable synthetic
tool. Central to this development was the remarkable evolution of
the catalysts during the past decades. Molybdenum alkylidynes carrying
(tripodal) silanolate ligands currently set the standards; their functional
group compatibility is exceptional, even though they comprise an early
transition metal in its highest oxidation state. Their performance
is manifested in case studies in the realm of dynamic covalent chemistry,
advanced applications to solid-phase synthesis, a revival of transannular
reactions, and the assembly of complex target molecules at sites,
which one may not intuitively trace back to an acetylenic ancestor.
In parallel with these innovations in material science and organic
synthesis, new insights into the mode of action of the most advanced
catalysts were gained by computational means and the use of unconventional
analytical tools such as 95Mo and 183W NMR spectroscopy.
The remaining shortcomings, gaps, and desiderata in the field are
also critically assessed.
Collapse
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
21
|
Haack A, Hillenbrand J, van Gastel M, Fürstner A, Neese F. Spectroscopic and Theoretical Study on Siloxy-Based Molybdenum and Tungsten Alkylidyne Catalysts for Alkyne Metathesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Haack
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | | | | | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|