1
|
Pahar S, Sharma V, Raj KV, Sangole MP, George CP, Singh K, Vanka K, Gonnade RG, Sen SS. Tridentate NacNac Tames T-Shaped Nickel(I) Radical. Chemistry 2024; 30:e202303957. [PMID: 38051591 DOI: 10.1002/chem.202303957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
The reaction of a nickel(II) chloride complex containing a tridentate β-diketiminato ligand with a picolyl group [2,6-iPr2 -C6 H3 NC(Me)CHC(Me)NH(CH2 py)]Ni(II)Cl (1)] with KSi(SiMe3 )3 conveniently afforded a nickel(I) radical with a T-shaped geometry (2). The compound's metalloradical nature was confirmed through electron paramagnetic resonance (EPR) studies and its reaction with TEMPO, resulting in the formation of a highly unusual three-membered nickeloxaziridine complex (3). When reacted with disulfide and diselenide, the S-S and Se-Se bonds were cleaved, and a coupled product was formed through carbon atom of the pyridine-imine group. The nickel(I) radical activates dihydrogen at room temperature and atmospheric pressure to give the monomeric nickel hydride.
Collapse
Affiliation(s)
- Sanjukta Pahar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - K Vipin Raj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Mayur P Sangole
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Christy P George
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kirandeep Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Rubel CZ, Cao Y, El-Hayek Ewing T, Laudadio G, Beutner GL, Wisniewski SR, Wu X, Baran PS, Vantourout JC, Engle KM. Electroreductive Synthesis of Nickel(0) Complexes. Angew Chem Int Ed Engl 2024; 63:e202311557. [PMID: 37984444 DOI: 10.1002/anie.202311557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Over the last fifty years, the use of nickel catalysts for facilitating organic transformations has skyrocketed. Nickel(0) sources act as useful precatalysts because they can enter a catalytic cycle through ligand exchange, without needing to undergo additional elementary steps. However, most Ni(0) precatalysts are synthesized with stoichiometric aluminum-hydride reductants, pyrophoric reagents that are not atom-economical and must be used at cryogenic temperatures. Here, we demonstrate that Ni(II) salts can be reduced on preparative scale using electrolysis to yield a variety of Ni(0) and Ni(II) complexes that are widely used as precatalysts in organic synthesis, including bis(1,5-cyclooctadiene)nickel(0) [Ni(COD)2 ]. This method overcomes the reproducibility issues of previously reported methods by standardizing the procedure, such that it can be performed anywhere in a robust manner. It can be transitioned to large scale through an electrochemical recirculating flow process and extended to an in situ reduction protocol to generate catalytic amounts of Ni(0) for organic transformations. We anticipate that this work will accelerate adoption of preparative electrochemistry for the synthesis of low-valent organometallic complexes in academia and industry.
Collapse
Affiliation(s)
- Camille Z Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
| | - Yilin Cao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tamara El-Hayek Ewing
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gabriele Laudadio
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gregory L Beutner
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Julien C Vantourout
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICMBS, UMR 5246 du CNRS), Université Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
- Syngenta Crop Protection AG, Schaffauserstrasse, 4332, Stein, Switzerland
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Schiltz P, Casaretto N, Bourcier S, Auffrant A, Gosmini C. Phosphinoquinoline supported Co II, Ni II, and Fe II complexes: divergent behaviour upon reduction. Dalton Trans 2023; 52:14859-14866. [PMID: 37792445 DOI: 10.1039/d3dt02441e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The reduction of [CoLBr2], a CoII complex supported by a diisopropylphosphinoquinoline (L) ligand, induced a ligand coupling giving access to a (PNNP) supported CoII complex which was isolated in 70% yield. This complex was formed using a minimum of 2 equivalents of a reductant (either Mn or KC8). The fate of [CoLBr2] in the presence of 1 equivalent of a reductant was more difficult to study; nevertheless, a CoI complex was characterised in the solid state. In order to determine whether this ligand coupling could occur with other 3d metals, L supported FeII and NiII complexes were synthesised. While no compound could be identified upon reduction of [FeLBr2], both [NiLBr2] and [NiL2Br](Br) led to the reduction at the metal center allowing the isolation of an original Ni0 trimer in a satisfactory yield. This study shows the different behaviours of these 3d metal complexes in the presence of a reductant.
Collapse
Affiliation(s)
- Pauline Schiltz
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France.
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France.
| | - Sophie Bourcier
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France.
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France.
| | - Corinne Gosmini
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91120 Palaiseau, France.
| |
Collapse
|
4
|
Müller P, Finkelstein P, Trapp N, Bismuto A, Jeschke G, Morandi B. Nickel(I)-Phenolate Complexes: The Key to Well-Defined Ni(I) Species. Inorg Chem 2023; 62:16661-16668. [PMID: 37782818 DOI: 10.1021/acs.inorgchem.3c01559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Phosphine-stabilized monovalent nickel complexes play an important role in catalysis, either as catalytically active species or as decomposition products. Most routes to access these complexes are highly ligand specific or rely on strong reducing agents. Our group recently disclosed a path to access nickel(I)-phenolate complexes from bis(1,5-cyclooctadiene)nickel(0) (Ni(cod)2). Herein, we demonstrate this protocol's broad applicability by ligating a wide range of mono- and bidentate phosphine ligands. We further show the versatility of the phenolate fragment as a precursor to nickel(I)-alkyl or aryl species, which are relevant to Ni catalysis or synthetically useful nickel(I)-chloride and hydride complexes. We also demonstrate that the chloride complex can be synthesized in a one-pot procedure starting from Ni(cod)2 in good yield, making this protocol a valuable alternative to current procedures. Single-crystal X-ray diffraction, IR, and EPR (or NMR) spectroscopy were employed to characterize all of the synthesized nickel complexes.
Collapse
Affiliation(s)
- Patrick Müller
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Patrick Finkelstein
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| | - Alessandro Bismuto
- Institut für Anorganiche Chemie, Universität Bonn, 53121 Bonn, Germany
- Institut für Organische and Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Gunnar Jeschke
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, HCI, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Malyk K, Pillai VG, Brennessel WW, Leon Baxin R, Silk ES, Nakamura DT, Kennedy CR. Distinguishing Competing Mechanistic Manifolds for C(acyl)-N Functionalization by a Ni/ N-Heterocyclic Carbene Catalyst System. JACS AU 2023; 3:2451-2457. [PMID: 37772178 PMCID: PMC10523494 DOI: 10.1021/jacsau.3c00283] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023]
Abstract
Carboxylic acid derivatives are appealing alternatives to organohalides as cross-coupling electrophiles for fine chemical synthesis due to their prevalence in biomass and bioactive small molecules as well as their ease of preparation and handling. Within this family, carboxamides comprise a versatile electrophile class for nickel-catalyzed coupling with carbon and heteroatom nucleophiles. However, even state-of-the-art C(acyl)-N functionalization and cross-coupling reactions typically require high catalyst loadings and specific substitution patterns. These challenges have proven difficult to overcome, in large part due to limited experimental mechanistic insight. In this work, we describe a detailed mechanistic case study of acylative coupling reactions catalyzed by the commonly employed Ni/SIPr catalyst system (SIPr = 1,3-bis(2,6-di-isopropylphenyl)-4,5-dihydroimidazol-2-ylidine). Stoichiometric organometallic studies, in situ spectroscopic measurements, and crossover experiments demonstrate the accessibility of Ni(0), Ni(I), and Ni(II) resting states. Although in situ precatalyst activation limits reaction efficiency, the low concentrations of active, SIPr-supported Ni(0) select for electrophile-first (closed-shell) over competing nucleophile-first (open-shell) mechanistic manifolds. We anticipate that the experimental insights into the nature and controlling features of these distinct pathways will accelerate rational improvements to cross-coupling methodologies involving pervasive carboxamide substrate motifs.
Collapse
Affiliation(s)
| | | | - William W. Brennessel
- University of Rochester, Department of Chemistry, Rochester, New York 14627, United States
| | - Roberto Leon Baxin
- University of Rochester, Department of Chemistry, Rochester, New York 14627, United States
| | - Elliot S. Silk
- University of Rochester, Department of Chemistry, Rochester, New York 14627, United States
| | - Daniel T. Nakamura
- University of Rochester, Department of Chemistry, Rochester, New York 14627, United States
| | - C. Rose Kennedy
- University of Rochester, Department of Chemistry, Rochester, New York 14627, United States
| |
Collapse
|
6
|
Dawson G, Lin Q, Neary MC, Diao T. Ligand Redox Activity of Organonickel Radical Complexes Governed by the Geometry. J Am Chem Soc 2023; 145:20551-20561. [PMID: 37695362 PMCID: PMC10515493 DOI: 10.1021/jacs.3c07031] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/12/2023]
Abstract
Nickel-catalyzed cross-coupling reactions often employ bidentate π-acceptor N-ligands to facilitate radical pathways. This report presents the synthesis and characterization of a series of organonickel radical complexes supported by bidentate N-ligands, including bpy, phen, and pyrox, which are commonly proposed and observed intermediates in catalytic reactions. Through a comparison of relevant analogues, we have established an empirical rule governing the electronic structures of these nickel radical complexes. The N-ligands exhibit redox activity in four-coordinate, square-planar nickel radical complexes, leading to the observation of ligand-centered radicals. In contrast, these ligands do not display redox activity when supporting three-coordinate, trigonal planar nickel radical complexes, which are better described as nickel-centered radicals. This trend holds true irrespective of the nature of the actor ligands. These results provide insights into the beneficial effect of coordinating salt additives and solvents in stabilizing nickel radical intermediates during catalytic reactions by modulating the redox activity of the ligands. Understanding the electronic structures of these active intermediates can contribute to the development and optimization of nickel catalysts for cross-coupling reactions.
Collapse
Affiliation(s)
- Gregory
A. Dawson
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Qiao Lin
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Michelle C. Neary
- Department
of Chemistry, CUNY − Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tianning Diao
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
7
|
Newman-Stonebraker SH, Raab TJ, Roshandel H, Doyle AG. Synthesis of Nickel(I)-Bromide Complexes via Oxidation and Ligand Displacement: Evaluation of Ligand Effects on Speciation and Reactivity. J Am Chem Soc 2023; 145:19368-19377. [PMID: 37610310 PMCID: PMC10616978 DOI: 10.1021/jacs.3c06233] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Nickel's +1 oxidation state has received much interest due to its varied and often enigmatic behavior in increasingly popular catalytic methods. In part, the lack of understanding about NiI results from common synthetic strategies limiting the breadth of complexes that are accessible for mechanistic study and catalyst design. We report an oxidative approach using tribromide salts that allows for the generation of a well-defined precursor, [NiI(COD)Br]2, as well as several new NiI complexes. Included among them are complexes bearing bulky monophosphines, for which structure-speciation relationships are established and catalytic reactivity in a Suzuki-Miyaura coupling (SMC) is investigated. Notably, these routes also allow for the synthesis of well-defined monomeric t-Bubpy-bound NiI complexes, which has not previously been achieved. These complexes, which react with aryl halides, can enable previously challenging mechanistic investigations and present new opportunities for catalysis and synthesis.
Collapse
Affiliation(s)
- Samuel H. Newman-Stonebraker
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - T. Judah Raab
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Hootan Roshandel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Abigail G. Doyle
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
8
|
Karl TM, Bouayad-Gervais S, Hueffel JA, Sperger T, Wellig S, Kaldas SJ, Dabranskaya U, Ward JS, Rissanen K, Tizzard GJ, Schoenebeck F. Machine Learning-Guided Development of Trialkylphosphine Ni (I) Dimers and Applications in Site-Selective Catalysis. J Am Chem Soc 2023. [PMID: 37411044 DOI: 10.1021/jacs.3c03403] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Owing to the unknown correlation of a metal's ligand and its resulting preferred speciation in terms of oxidation state, geometry, and nuclearity, a rational design of multinuclear catalysts remains challenging. With the goal to accelerate the identification of suitable ligands that form trialkylphosphine-derived dihalogen-bridged Ni(I) dimers, we herein employed an assumption-based machine learning approach. The workflow offers guidance in ligand space for a desired speciation without (or only minimal) prior experimental data points. We experimentally verified the predictions and synthesized numerous novel Ni(I) dimers as well as explored their potential in catalysis. We demonstrate C-I selective arylations of polyhalogenated arenes bearing competing C-Br and C-Cl sites in under 5 min at room temperature using 0.2 mol % of the newly developed dimer, [Ni(I)(μ-Br)PAd2(n-Bu)]2, which is so far unmet with alternative dinuclear or mononuclear Ni or Pd catalysts.
Collapse
Affiliation(s)
- Teresa M Karl
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Samir Bouayad-Gervais
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Julian A Hueffel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Sebastian Wellig
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Sherif J Kaldas
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, FIN40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, FIN40014 Jyväskylä, Finland
| | - Graham J Tizzard
- UK National Crystallography Service, School of Chemistry, University of Southampton, SO17 1BJ Southhampton, U.K
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
9
|
Ni S, Yan J, Tewari S, Reijerse EJ, Ritter T, Cornella J. Nickel Meets Aryl Thianthrenium Salts: Ni(I)-Catalyzed Halogenation of Arenes. J Am Chem Soc 2023; 145:9988-9993. [PMID: 37126771 PMCID: PMC10176483 DOI: 10.1021/jacs.3c02611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Herein, a regioselective, late-stage two-step arene halogenation method is reported. We propose how unusual Ni(I)/(III) catalysis is enabled by a combination of aryl thianthrenium and Ni redox properties that is hitherto unachieved with other (pseudo)halides. The catalyst is accessed in situ from inexpensive NiCl2·6(H2O) and zinc without the need of supporting ligands.
Collapse
Affiliation(s)
- Shengyang Ni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Jiyao Yan
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Srija Tewari
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Edward J Reijerse
- Max Planck Institut for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
10
|
Schmitt M, Mayländer M, Heizmann T, Richert S, Bülow C, Hirsch K, Zamudio‐Bayer V, Lau JT, Krossing I. Isolation and Characterization of the Homoleptic Nickel(I) and Nickel(II) Bis‐benzene Sandwich Cations. Angew Chem Int Ed Engl 2022; 61:e202211555. [PMID: 36197000 PMCID: PMC10099793 DOI: 10.1002/anie.202211555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/17/2022]
Abstract
A stable salt of the metalloradical [Ni(C6 H6 )2 ]+ hitherto unknown in the condensed phase was synthesized from [Ni(CO)4 ]+ [WCA]- and benzene ([WCA]- =[F{Al(ORF )3 }2 ]- ; RF =C(CF3 )3 ). Single crystal XRD reveals a remarkable asymmetrically η3 ,η6 -slipped sandwich structure. The magnetic properties of the [Ni(C6 H6 )2 ]+ cation were determined in solution and in the gas phase. Oxidation with the synergistic Ag+ /0.5 l2 system led to the salt [Ni(C6 H6 )2 ]2+ ([WCA]- )2 . All products were fully characterized by means of IR, Raman, NMR/EPR, single crystal and powder XRD.
Collapse
Affiliation(s)
- Manuel Schmitt
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Maximilian Mayländer
- Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Tim Heizmann
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Sabine Richert
- Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| | - Christine Bülow
- Abteilung für Hochempfindliche Röntgenspektroskopie Helmholtz-Zentrum Berlin für Materialien und Energie Albert-Einstein-Straße 15 12489 Berlin Germany
- Physikalisches Institut Universität Freiburg Hermann-Herder-Straße 3 79104 Freiburg Germany
| | - Konstantin Hirsch
- Abteilung für Hochempfindliche Röntgenspektroskopie Helmholtz-Zentrum Berlin für Materialien und Energie Albert-Einstein-Straße 15 12489 Berlin Germany
| | - Vicente Zamudio‐Bayer
- Abteilung für Hochempfindliche Röntgenspektroskopie Helmholtz-Zentrum Berlin für Materialien und Energie Albert-Einstein-Straße 15 12489 Berlin Germany
| | - J. Tobias Lau
- Abteilung für Hochempfindliche Röntgenspektroskopie Helmholtz-Zentrum Berlin für Materialien und Energie Albert-Einstein-Straße 15 12489 Berlin Germany
- Physikalisches Institut Universität Freiburg Hermann-Herder-Straße 3 79104 Freiburg Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Albertstr. 21 79104 Freiburg Germany
| |
Collapse
|
11
|
Somerville RJ, Borys AM, Perez-Jimenez M, Nova A, Balcells D, Malaspina LA, Grabowsky S, Carmona E, Hevia E, Campos J. Unmasking the constitution and bonding of the proposed lithium nickelate "Li 3NiPh 3(solv) 3": revealing the hidden C 6H 4 ligand. Chem Sci 2022; 13:5268-5276. [PMID: 35655554 PMCID: PMC9093164 DOI: 10.1039/d2sc01244h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
More than four decades ago, a complex identified as the planar homoleptic lithium nickelate “Li3NiPh3(solv)3” was reported by Taube and co-workers. This and subsequent reports involving this complex have lain dormant since; however, the absence of an X-ray diffraction structure leaves questions as to the nature of the Ni–PhLi bonding and the coordination geometry at Ni. By systematically evaluating the reactivity of Ni(COD)2 with PhLi under different conditions, we have found that this classical molecule is instead a unique octanuclear complex, [{Li3(solv)2Ph3Ni}2(μ-η2:η2-C6H4)] (5). This is supported by X-ray crystallography and solution-state NMR studies. A theoretical bonding analysis from NBO, QTAIM, and ELI perspectives reveals extreme back-bonding to the bridging C6H4 ligand resulting in dimetallabicyclobutane character, the lack of a Ni–Ni bond, and pronounced σ-bonding between the phenyl carbanions and nickel, including a weak σC–Li → sNi interaction with the C–Li bond acting as a σ-donor. Employing PhNa led to the isolation of [Na2(solv)3Ph2NiCOD]2 (7) and [Na2(solv)3Ph2(NaC8H11)Ni(COD)]2 (8), which lack the benzyne-derived ligand. These findings provide new insights into the synthesis, structure, bonding and reactivity of heterobimetallic nickelates, whose prevalence in organonickel chemistry and catalysis is likely greater than previously believed. We disclose the actual octanuclear nature of the major compound from reacting Ni(COD)2 and PhLi, assigned for more than four decades as ‘Li3NiPh3(solv)3’. We provide a thorough bonding analysis and discuss its potential implications in catalysis.![]()
Collapse
Affiliation(s)
- Rosie J Somerville
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC), University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Andryj M Borys
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Marina Perez-Jimenez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC), University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Ainara Nova
- Hylleraas Centre for Quantum Molecular Sciences, Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo P.O. Box 1033, Blindern 0315 Oslo Norway
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo P.O. Box 1033, Blindern 0315 Oslo Norway
| | - Lorraine A Malaspina
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Simon Grabowsky
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Ernesto Carmona
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC), University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern Freiestrasse 3 3012 Bern Switzerland
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC), University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
12
|
Borys AM, Hevia E. Mechanisms of the Nickel-Catalysed Hydrogenolysis and Cross-Coupling of Aryl Ethers. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1806-4513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe Ni-catalysed hydrogenolysis and cross-coupling of aryl ethers has emerged as a powerful synthetic tool to transform inert phenol-derived electrophiles into functionalised aromatic molecules. This has attracted significant interest due to its potential to convert the lignin fraction of biomass into chemical feedstocks, or to enable orthogonal reactivity and late-stage synthetic modification. Although the scope of nucleophiles employed, and hence the C–C and C–heteroatom bonds that can be forged, has expanded significantly since Wenkert’s seminal work in 1979, mechanistic understanding on how these reactions operate is still uncertain since the comparatively inert Caryl–O bond of aryl ethers challenge the involvement of classical mechanisms involving direct oxidative addition to Ni(0). In this review, we document the different mechanisms that have been proposed in the Ni-catalysed hydrogenolysis and cross-coupling of aryl ethers. These include: (i) direct oxidative addition; (ii) Lewis acid assisted C–O bond cleavage; (iii) anionic nickelates, and; (iv) Ni(I) intermediates. Experimental and theoretical investigations by numerous research groups have generated a pool of knowledge that will undoubtedly facilitate future discoveries in the development of novel Ni-catalysed transformations of aryl ethers.1 Introduction2 Direct Oxidative Addition3 Hydrogenolysis of Aryl Ethers4 Lewis Acid Assisted C–O Bond Cleavage5 Anionic Nickelates6 Ni(I) Intermediates7 The ‘Naphthalene Problem’8 Conclusions and Outlook
Collapse
|
13
|
Humphrey ELBJ, Kennedy AR, Sproules S, Nelson DJ. Evaluating a Dispersion of Sodium in Sodium Chloride for the Synthesis of Low‐Valent Nickel Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202101006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Alan R. Kennedy
- University of Strathclyde Pure and Applied Chemistry UNITED KINGDOM
| | | | - David James Nelson
- University of Strathclyde Department of Pure and Applied Chemistry 295 Cathedral Street G1 1XL Glasgow UNITED KINGDOM
| |
Collapse
|
14
|
Affiliation(s)
- Alessandro Bismuto
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI CH-8093 Zürich Switzerland
| | - Patrick Finkelstein
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI CH-8093 Zürich Switzerland
| | - Patrick Müller
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI CH-8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI CH-8093 Zürich Switzerland
| |
Collapse
|
15
|
Dodd NA, Bacsa J, Sadighi JP. Synthesis of a Nickel(I) alkoxide and related cation equivalents. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|