1
|
Vigil SA, Moreno-Hernandez IA. Dissolution Heterogeneity Observed in Anisotropic Ruthenium Dioxide Nanocrystals via Liquid-Phase Transmission Electron Microscopy. J Am Chem Soc 2024; 146. [PMID: 38597585 PMCID: PMC11048125 DOI: 10.1021/jacs.3c13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Noble metal oxides such as ruthenium dioxide are highly active electrocatalysts for anodic reactions in acidic electrolytes, but dissolution during electrochemical operation impedes wide-scale applications in renewable energy technologies. Improving the fundamental understanding of the dissolution dynamics of application-relevant morphologies such as nanocrystals is critical for the grid-scale implementation of these materials. Herein, we report the nanoscale heterogeneity observed via liquid-phase transmission electron microscopy during ruthenium dioxide nanocrystal dissolution under oxidizing conditions. Single-crystalline ruthenium dioxide nanocrystals enabled the direct observation of dissolution along different crystallographic facets, allowing an unprecedented direct comparison of crystal facet stability. The nanoscale observations revealed substantial heterogeneity in the relative stability of crystallographic facets across different nanocrystals, attributed to the nanoscale strains present in these crystals. These findings highlight the importance of nanoscale heterogeneity in determining macroscale properties such as electrocatalyst stability and provide a characterization methodology that can be integrated into next-generation electrocatalyst discovery efforts.
Collapse
Affiliation(s)
- S. Avery Vigil
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | | |
Collapse
|
2
|
Liu C, Lin O, Pidaparthy S, Ni H, Lyu Z, Zuo JM, Chen Q. 4D-STEM Mapping of Nanocrystal Reaction Dynamics and Heterogeneity in a Graphene Liquid Cell. NANO LETTERS 2024; 24:3890-3897. [PMID: 38526426 DOI: 10.1021/acs.nanolett.3c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Chemical reaction kinetics at the nanoscale are intertwined with heterogeneity in structure and composition. However, mapping such heterogeneity in a liquid environment is extremely challenging. Here we integrate graphene liquid cell (GLC) transmission electron microscopy and four-dimensional scanning transmission electron microscopy to image the etching dynamics of gold nanorods in the reaction media. Critical to our experiment is the small liquid thickness in a GLC that allows the collection of high-quality electron diffraction patterns at low dose conditions. Machine learning-based data-mining of the diffraction patterns maps the three-dimensional nanocrystal orientation, groups spatial domains of various species in the GLC, and identifies newly generated nanocrystallites during reaction, offering a comprehensive understanding on the reaction mechanism inside a nanoenvironment. This work opens opportunities in probing the interplay of structural properties such as phase and strain with solution-phase reaction dynamics, which is important for applications in catalysis, energy storage, and self-assembly.
Collapse
Affiliation(s)
- Chang Liu
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Oliver Lin
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Saran Pidaparthy
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Haoyang Ni
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Zhiheng Lyu
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Chen A, Dissanayake TU, Sun J, Woehl TJ. Unraveling chemical processes during nanoparticle synthesis with liquid phase electron microscopy and correlative techniques. Chem Commun (Camb) 2023; 59:12830-12846. [PMID: 37807847 DOI: 10.1039/d3cc03723a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Liquid phase transmission electron microscopy (LPTEM) has enabled unprecedented direct real time imaging of physicochemical processes during solution phase synthesis of metallic nanoparticles. LPTEM primarily provides images of nanometer scale, and sometimes atomic scale, metal nanoparticle crystallization processes, but provides little chemical information about organic surface ligands, metal-ligand complexes and reaction intermediates, and redox reactions. Likewise, complex electron beam-solvent interactions during LPTEM make it challenging to pinpoint the chemical processes, some involving exotic highly reactive radicals, impacting nanoparticle formation. Pairing LPTEM with correlative solution synthesis, ex situ chemical analysis, and theoretical modeling represents a powerful approach to gain a holistic understanding of the chemical processes involved in nanoparticle synthesis. In this feature article, we review recent work by our lab and others that has focused on elucidating chemical processes during nanoparticle synthesis using LPTEM and correlative chemical characterization and modeling, including mass and optical spectrometry, fluorescence microscopy, solution chemistry, and reaction kinetic modeling. In particular, we show how these approaches enable investigating redox chemistry during LPTEM, polymeric and organic capping ligands, metal deposition mechanisms on plasmonic nanoparticles, metal clusters and complexes, and multimetallic nanoparticle formation. Future avenues of research are discussed, including moving beyond electron beam induced nanoparticle formation by using light and thermal stimuli during LPTEM. We discuss prospects for real time LPTEM imaging and online chemical analysis of reaction intermediates using microfluidic flow reactors.
Collapse
Affiliation(s)
- Amy Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, College Park, MD 20742, USA
| | - Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| | - Jiayue Sun
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD 20742, USA
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Mondaca-Medina E, García-Carrillo R, Lee H, Wang Y, Zhang H, Ren H. Nanoelectrochemistry in electrochemical phase transition reactions. Chem Sci 2023; 14:7611-7619. [PMID: 37476712 PMCID: PMC10355110 DOI: 10.1039/d3sc01857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Electrochemical phase transition is important in a range of processes, including gas generation in fuel cells and electrolyzers, as well as in electrodeposition in battery and metal production. Nucleation is the first step in these phase transition reactions. A deep understanding of the kinetics, and mechanism of the nucleation and the structure of the nuclei and nucleation sites is fundamentally important. In this perspective, theories and methods for studying electrochemical nucleation are briefly reviewed, with an emphasis on nanoelectrochemistry and single-entity electrochemistry approaches. Perspectives on open questions and potential future approaches are also discussed.
Collapse
Affiliation(s)
- Elías Mondaca-Medina
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Roberto García-Carrillo
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Yufei Wang
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - He Zhang
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| |
Collapse
|
5
|
Chao HY, Venkatraman K, Moniri S, Jiang Y, Tang X, Dai S, Gao W, Miao J, Chi M. In Situ and Emerging Transmission Electron Microscopy for Catalysis Research. Chem Rev 2023. [PMID: 37327473 DOI: 10.1021/acs.chemrev.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalysts are the primary facilitator in many dynamic processes. Therefore, a thorough understanding of these processes has vast implications for a myriad of energy systems. The scanning/transmission electron microscope (S/TEM) is a powerful tool not only for atomic-scale characterization but also in situ catalytic experimentation. Techniques such as liquid and gas phase electron microscopy allow the observation of catalysts in an environment conducive to catalytic reactions. Correlated algorithms can greatly improve microscopy data processing and expand multidimensional data handling. Furthermore, new techniques including 4D-STEM, atomic electron tomography, cryogenic electron microscopy, and monochromated electron energy loss spectroscopy (EELS) push the boundaries of our comprehension of catalyst behavior. In this review, we discuss the existing and emergent techniques for observing catalysts using S/TEM. Challenges and opportunities highlighted aim to inspire and accelerate the use of electron microscopy to further investigate the complex interplay of catalytic systems.
Collapse
Affiliation(s)
- Hsin-Yun Chao
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Kartik Venkatraman
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Saman Moniri
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenpei Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| |
Collapse
|
6
|
Fritsch B, Körner A, Couasnon T, Blukis R, Taherkhani M, Benning LG, Jank MPM, Spiecker E, Hutzler A. Tailoring the Acidity of Liquid Media with Ionizing Radiation: Rethinking the Acid-Base Correlation beyond pH. J Phys Chem Lett 2023; 14:4644-4651. [PMID: 37167107 DOI: 10.1021/acs.jpclett.3c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Advanced in situ techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions. Thus, pH does not capture the acidity under irradiation. Using kinetic modeling of radiation chemistry, we introduce alternative measures of acidity (radiolytic acidity π* and radiolytic ion product KW*), that account for radiation-induced alterations of both H+ and OH- concentration. Moreover, we demonstrate that adding pH-neutral solutes such as LiCl, LiBr, or LiNO3 can trigger a significant change in π*. This provides a huge parameter space to tailor the acidity for in situ experiments involving ionizing radiation, as present in synchrotron facilities or during liquid-phase electron microscopy.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Körner
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
| | - Thaïs Couasnon
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
| | - Roberts Blukis
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
| | - Mehran Taherkhani
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Liane G Benning
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| | - Michael P M Jank
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
- Fraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystraße 10, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Hutzler
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
7
|
Crook MF, Moreno-Hernandez IA, Ondry JC, Ciston J, Bustillo KC, Vargas A, Alivisatos AP. EELS Studies of Cerium Electrolyte Reveal Substantial Solute Concentration Effects in Graphene Liquid Cells. J Am Chem Soc 2023; 145:6648-6657. [PMID: 36939571 DOI: 10.1021/jacs.2c07778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Graphene liquid cell transmission electron microscopy is a powerful technique to visualize nanoscale dynamics and transformations at atomic resolution. However, the solution in liquid cells is known to be affected by radiolysis, and the stochastic formation of graphene liquid cells raises questions about the solution chemistry in individual pockets. In this study, electron energy loss spectroscopy (EELS) was used to evaluate a model encapsulated solution, aqueous CeCl3. First, the ratio between the O K-edge and Ce M-edge was used to approximate the concentration of cerium salt in the graphene liquid cell. It was determined that the ratio between oxygen and cerium was orders of magnitude lower than what is expected for a dilute solution, indicating that the encapsulated solution is highly concentrated. To probe how this affects the chemistry within graphene liquid cells, the oxidation of Ce3+ was measured using time-resolved parallel EELS. It was determined that Ce3+ oxidizes faster under high electron fluxes, but reaches the same steady-state Ce4+ concentration regardless of flux. The time-resolved concentration profiles enabled direct comparison to radiolysis models, which indicate rate constants and g-values of certain molecular species are substantially different in the highly concentrated environment. Finally, electron flux-dependent gold nanocrystal etching trajectories showed that gold nanocrystals etch faster at higher electron fluxes, correlating well with the Ce3+ oxidation kinetics. Understanding the effects of the highly concentrated solution in graphene liquid cells will provide new insight on previous studies and may open up opportunities to systematically study systems in highly concentrated solutions at high resolution.
Collapse
Affiliation(s)
- Michelle F Crook
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ivan A Moreno-Hernandez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Jim Ciston
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C Bustillo
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alfred Vargas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Pei X, Wang T, Wan Y, Gu K, Lu Z, Wang J. Etching anisotropy in two-dimensional SnS layered crystals using a thiol-amine solvent mixture as an etchant. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Yan C, Byrne D, Ondry JC, Kahnt A, Moreno-Hernandez IA, Kamat GA, Liu ZJ, Laube C, Crook MF, Zhang Y, Ercius P, Alivisatos AP. Facet-selective etching trajectories of individual semiconductor nanocrystals. SCIENCE ADVANCES 2022; 8:eabq1700. [PMID: 35947667 DOI: 10.1126/sciadv.abq1700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The size and shape of semiconductor nanocrystals govern their optical and electronic properties. Liquid cell transmission electron microscopy (LCTEM) is an emerging tool that can directly visualize nanoscale chemical transformations and therefore inform the precise synthesis of nanostructures with desired functions. However, it remains difficult to controllably investigate the reactions of semiconductor nanocrystals with LCTEM, because of the highly reactive environment formed by radiolysis of liquid. Here, we harness the radiolysis processes and report the single-particle etching trajectories of prototypical semiconductor nanomaterials with well-defined crystalline facets. Lead selenide nanocubes represent an isotropic structure that retains the cubic shape during etching via a layer-by-layer mechanism. The anisotropic arrow-shaped cadmium selenide nanorods have polar facets terminated by either cadmium or selenium atoms, and the transformation trajectory is driven by etching the selenium-terminated facets. LCTEM trajectories reveal how nanoscale shape transformations of semiconductors are governed by the reactivity of specific facets in liquid environments.
Collapse
Affiliation(s)
- Chang Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dana Byrne
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, D-04318 Leipzig, Germany
| | | | - Gaurav A Kamat
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zi-Jie Liu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christian Laube
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, D-04318 Leipzig, Germany
| | - Michelle F Crook
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ye Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|