1
|
Franz AH, Bromley KS, Aung ET, Do SQL, Rosenblatt HM, Watson AJ. NMR Coupling Constants, Karplus Equations, and Adjusted MD Statistics: Detecting Diagnostic Torsion Angles for the Solution Geometry of 6-[α-d-Mannopyranosyl]-d-Mannopyranose (Mannobiose). MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024. [PMID: 39415469 DOI: 10.1002/mrc.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
The quantitative solution conformations of 2-(hydroxymethyl)-tetrahydropyran, α-methyl-d-mannopyranoside, and 6-[α-d-mannopyranosyl]-d-mannopyranose (mannobiose) are described. Parametrized Karplus equations for redundant spin pairs across the terminal ω-torsion and the glycosidic ω-torsion for mannobiose are developed, including ω/θ-hypersurfaces for the terminal hydroxymethylene group. Experimental NMR data, algorithmic spectral simulation (clustered Hamiltonian method), molecular dynamics (MD) simulations (GLYCAM06), energy minimizations by DFT, and adjusted torsion angle populations weighted over the Karplus-type equations are used. We demonstrate that spectral simulation is a powerful tool in the refinement of initial J values obtained from static GAIO DFT calculations. We also show that only as few as one of multiple redundant torsions can be diagnostic for conformational analysis of the disaccharide.
Collapse
Affiliation(s)
- Andreas H Franz
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Kendall S Bromley
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Ei T Aung
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Stephen Q L Do
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Hana M Rosenblatt
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Amelia J Watson
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| |
Collapse
|
2
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
3
|
Widmalm G. Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy. JACS AU 2024; 4:20-39. [PMID: 38274261 PMCID: PMC10807006 DOI: 10.1021/jacsau.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Glycans in the form of oligosaccharides, polysaccharides, and glycoconjugates are ubiquitous in nature, and their structures range from linear assemblies to highly branched and decorated constructs. Solution state NMR spectroscopy facilitates elucidation of preferred conformations and shapes of the saccharides, motions, and dynamic aspects related to processes over time as well as the study of transient interactions with proteins. Identification of intermolecular networks at the atomic level of detail in recognition events by carbohydrate-binding proteins known as lectins, unraveling interactions with antibodies, and revealing substrate scope and action of glycosyl transferases employed for synthesis of oligo- and polysaccharides may efficiently be analyzed by NMR spectroscopy. By utilizing NMR active nuclei present in glycans and derivatives thereof, including isotopically enriched compounds, highly detailed information can be obtained by the experiments. Subsequent analysis may be aided by quantum chemical calculations of NMR parameters, machine learning-based methodologies and artificial intelligence. Interpretation of the results from NMR experiments can be complemented by extensive molecular dynamics simulations to obtain three-dimensional dynamic models, thereby clarifying molecular recognition processes involving the glycans.
Collapse
Affiliation(s)
- Göran Widmalm
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Lee J, Kim H, Lee H, Boraste DR, Kim K, Seo J. Protomer of Imipramine Captured in Cucurbit[7]uril. J Phys Chem A 2023; 127:10758-10765. [PMID: 38091518 DOI: 10.1021/acs.jpca.3c04556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Small molecules possessing multiple proton-accessible sites are important not only to many biological systems but also to host-guest chemistry; their protonation states are causal to boosting or hindering specific host-guest interactions. However, determining the protonation site is not trivial. Herein, we conduct electrospray ionization ion mobility spectrometry-mass spectrometry to imipramine, a known molecule with two protonation sites, based on the introduction of cucurbit[7]uril as a host molecule. For protonated imipramine, the proposed strategy allows clear distinction of the two protomers as host-guest complex ions and can be leveraged to capture the energetically less preferable protomer of the protonated imipramine.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyerim Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hochan Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Deepak R Boraste
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kimoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Center for Self-assembly and Complexity, Institute for Basic Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Novakovic M, Kim J, Su XC, Kupče E, Frydman L. Relaxation-Assisted Magnetization Transfer Phenomena for a Sensitivity-Enhanced 2D NMR. Anal Chem 2023; 95:18091-18098. [PMID: 38008904 PMCID: PMC10719887 DOI: 10.1021/acs.analchem.3c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
2D NOESY and TOCSY play central roles in contemporary NMR. We have recently discussed how solvent-driven exchanges can significantly enhance the sensitivity of such methods when attempting correlations between labile and nonlabile protons. This study explores two scenarios where similar sensitivity enhancements can be achieved in the absence of solvent exchange: the first one involves biomolecular paramagnetic systems, while the other involves small organic molecules in natural abundance. It is shown that, in both cases, the effects introduced by either differential paramagnetic shift and relaxation or by polarization sharing among networks of protons can provide a similar sensitivity boost, as previously discussed for solvent exchange. The origin and potential of the resulting enhancements are analyzed, and experiments that demonstrate them in protein and natural products are exemplified. Limitations and future improvements of these approaches are also briefly discussed.
Collapse
Affiliation(s)
- Mihajlo Novakovic
- Departments
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Jihyun Kim
- Departments
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
- Department
of Chemistry Education, Kyungpook National
University, Daegu 41566, Republic of Korea
| | - Xun-Cheng Su
- State
Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - E̅riks Kupče
- Bruker
Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom
| | - Lucio Frydman
- Departments
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Dorn G, Gmeiner C, de Vries T, Dedic E, Novakovic M, Damberger FF, Maris C, Finol E, Sarnowski CP, Kohlbrecher J, Welsh TJ, Bolisetty S, Mezzenga R, Aebersold R, Leitner A, Yulikov M, Jeschke G, Allain FHT. Integrative solution structure of PTBP1-IRES complex reveals strong compaction and ordering with residual conformational flexibility. Nat Commun 2023; 14:6429. [PMID: 37833274 PMCID: PMC10576089 DOI: 10.1038/s41467-023-42012-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
RNA-binding proteins (RBPs) are crucial regulators of gene expression, often composed of defined domains interspersed with flexible, intrinsically disordered regions. Determining the structure of ribonucleoprotein (RNP) complexes involving such RBPs necessitates integrative structural modeling due to their lack of a single stable state. In this study, we integrate magnetic resonance, mass spectrometry, and small-angle scattering data to determine the solution structure of the polypyrimidine-tract binding protein 1 (PTBP1/hnRNP I) bound to an RNA fragment from the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV). This binding, essential for enhancing the translation of viral RNA, leads to a complex structure that demonstrates RNA and protein compaction, while maintaining pronounced conformational flexibility. Acting as an RNA chaperone, PTBP1 orchestrates the IRES RNA into a few distinct conformations, exposing the RNA stems outward. This conformational diversity is likely common among RNP structures and functionally important. Our approach enables atomic-level characterization of heterogeneous RNP structures.
Collapse
Affiliation(s)
- Georg Dorn
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Christoph Gmeiner
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Tebbe de Vries
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Emil Dedic
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Mihajlo Novakovic
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Fred F Damberger
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Christophe Maris
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Esteban Finol
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Chris P Sarnowski
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Villigen, Switzerland
| | - Timothy J Welsh
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Sreenath Bolisetty
- Laboratory of Food & Soft Materials, Institute of Food, Nutrition and Health, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Raffaele Mezzenga
- Laboratory of Food & Soft Materials, Institute of Food, Nutrition and Health, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
| | - Frédéric H-T Allain
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
7
|
Fittolani G, Tyrikos-Ergas T, Poveda A, Yu Y, Yadav N, Seeberger PH, Jiménez-Barbero J, Delbianco M. Synthesis of a glycan hairpin. Nat Chem 2023; 15:1461-1469. [PMID: 37400598 PMCID: PMC10533408 DOI: 10.1038/s41557-023-01255-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/26/2023] [Indexed: 07/05/2023]
Abstract
The primary sequence of a biopolymer encodes the essential information for folding, permitting to carry out sophisticated functions. Inspired by natural biopolymers, peptide and nucleic acid sequences have been designed to adopt particular three-dimensional (3D) shapes and programmed to exert specific functions. In contrast, synthetic glycans capable of autonomously folding into defined 3D conformations have so far not been explored owing to their structural complexity and lack of design rules. Here we generate a glycan that adopts a stable secondary structure not present in nature, a glycan hairpin, by combining natural glycan motifs, stabilized by a non-conventional hydrogen bond and hydrophobic interactions. Automated glycan assembly enabled rapid access to synthetic analogues, including site-specific 13C-labelled ones, for nuclear magnetic resonance conformational analysis. Long-range inter-residue nuclear Overhauser effects unequivocally confirmed the folded conformation of the synthetic glycan hairpin. The capacity to control the 3D shape across the pool of available monosaccharides has the potential to afford more foldamer scaffolds with programmable properties and functions.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Ana Poveda
- CICbioGUNE, Basque Research and Technology Alliance, Derio, Spain
| | - Yang Yu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA
| | - Nishu Yadav
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research and Technology Alliance, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Respiratorias, Madrid, Spain
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
8
|
Gao Y, Widmalm G, Im W. Modeling and Simulation of Bacterial Outer Membranes with Lipopolysaccharides and Capsular Polysaccharides. J Chem Inf Model 2023; 63:1592-1601. [PMID: 36802606 DOI: 10.1021/acs.jcim.3c00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Capsule is one of the common virulence factors in Gram-negative bacteria protecting pathogens from host defenses and consists of long-chain capsular polysaccharides (CPS) anchored in the outer membrane (OM). Elucidating structural properties of CPS is important to understand its biological functions as well as the OM properties. However, the outer leaflet of the OM in current simulation studies is represented exclusively by LPS due to the complexity and diversity of CPS. In this work, representative Escherichia coli CPS, KLPS (a lipid A-linked form) and KPG (a phosphatidylglycerol-linked form), are modeled and incorporated into various symmetric bilayers with co-existing LPS in different ratios. All-atom molecular dynamics simulations of these systems have been conducted to characterize various bilayer properties. Incorporation of KLPS makes the acyl chains of LPS more rigid and ordered, while incorporation of KPG makes them less ordered and flexible. These results are consistent with the calculated area per lipid (APL) of LPS, in which the APL of LPS becomes smaller when KLPS is incorporated, whereas it gets larger when KPG is included. Torsional analysis reveals that the influence of the CPS presence on the conformational distributions of the glycosidic linkages of LPS is small, and minor differences are also detected for the inner and outer regions of the CPS. Combined with previously modeled enterobacterial common antigens (ECAs) in the form of mixed bilayers, this work provides more realistic OM models as well as the basis for characterization of interactions between the OM and OM proteins.
Collapse
Affiliation(s)
- Ya Gao
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China.,Department of Biological Sciences, Department of Chemistry, and Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Wonpil Im
- Department of Biological Sciences, Department of Chemistry, and Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
9
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Zhou W, Chu H. Identification of Sports Athletes' High-Strength Sports Injuries Based on NMR. SCANNING 2022; 2022:1016628. [PMID: 35912121 PMCID: PMC9307404 DOI: 10.1155/2022/1016628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
In order to study the high-strength sports injury in sports, this paper proposes a method based on NMR to identify the high-strength sports injury of sports athletes. This method carries out a questionnaire survey and research on the athletes who are excellent in sports dance major from 2019 to 2021 in the Institute of Physical Education. The athletes' age range is 18-25 years, and the training period of sports dance is 3-5 years. The results show that compared with other recognition methods, the recognition method based on NMR has higher accuracy and efficiency. The method of this study is helpful to improve the recognition efficiency and accuracy. Athletes are very easy to get injured during sports. In order to reduce the degree of injury of athletes, we should strictly follow the action standards in the training process to avoid serious injury.
Collapse
Affiliation(s)
- Wenyong Zhou
- Jiangxi Institute of Fashion Technology, Nanchang, Jiangxi 330201, China
| | - Huan Chu
- Jiangxi Institute of Fashion Technology, Nanchang, Jiangxi 330201, China
| |
Collapse
|
11
|
Wang L, Li J, Xiang J, Cui J, Tang Y. Kinetic characterization of a slow chemical exchange between two sites in N,N-dimethylacetylamide by CEST NMR spectroscopy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Soares CO, Grosso AS, Ereño-Orbea J, Coelho H, Marcelo F. Molecular Recognition Insights of Sialic Acid Glycans by Distinct Receptors Unveiled by NMR and Molecular Modeling. Front Mol Biosci 2021; 8:727847. [PMID: 34869580 PMCID: PMC8634706 DOI: 10.3389/fmolb.2021.727847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
All cells are decorated with a highly dense and complex structure of glycan chains, which are mostly attached to proteins and lipids. In this context, sialic acids are a family of nine-carbon acidic monosaccharides typically found at the terminal position of glycan chains, modulating several physiological and pathological processes. Sialic acids have many structural and modulatory roles due to their negative charge and hydrophilicity. In addition, the recognition of sialic acid glycans by mammalian cell lectins, such as siglecs, has been described as an important immunological checkpoint. Furthermore, sialic acid glycans also play a pivotal role in host-pathogen interactions. Various pathogen receptors exposed on the surface of viruses and bacteria are responsible for the binding to sialic acid sugars located on the surface of host cells, becoming a critical point of contact in the infection process. Understanding the molecular mechanism of sialic acid glycans recognition by sialic acid-binding proteins, present on the surface of pathogens or human cells, is essential to realize the biological mechanism of these events and paves the way for the rational development of strategies to modulate sialic acid-protein interactions in diseases. In this perspective, nuclear magnetic resonance (NMR) spectroscopy, assisted with molecular modeling protocols, is a versatile and powerful technique to investigate the structural and dynamic aspects of glycoconjugates and their interactions in solution at the atomic level. NMR provides the corresponding ligand and protein epitopes, essential for designing and developing potential glycan-based therapies. In this review, we critically discuss the current state of knowledge about the structural features behind the molecular recognition of sialic acid glycans by different receptors, naturally present on human cells or pathogens, disclosed by NMR spectroscopy and molecular modeling protocols.
Collapse
Affiliation(s)
- Cátia Oliveira Soares
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Ana Sofia Grosso
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - June Ereño-Orbea
- CIC bioGUNE, Basque Research and Technology Alliance, Bizkaia Technology Park, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Helena Coelho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Filipa Marcelo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
13
|
Novakovic M, Jayanthi S, Lupulescu A, Concilio MG, Kim J, Columbus D, Kuprov I, Frydman L. Heteronuclear transfers from labile protons in biomolecular NMR: Cross polarization, revisited. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107083. [PMID: 34688177 DOI: 10.1016/j.jmr.2021.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
INEPT- and HMQC-based pulse sequences are widely used to transfer polarization between heteronuclei, particularly in biomolecular spectroscopy: they are easy to setup and involve low power deposition. Still, these short-pulse polarization transfers schemes are challenged by fast solvent chemical exchange. An alternative to improve these heteronuclear transfers is J-driven cross polarization (J-CP), which transfers polarization by spin-locking the coupled spins under Hartmann-Hahn conditions. J-CP provides certain immunity against chemical exchange and other T2-like relaxation effects, a behavior that is here examined in depth by both Liouville-space numerical and analytical derivations describing the transfer efficiency. While superior to INEPT-based transfers, fast exchange may also slow down these J-CP transfers, hurting their efficiency. This study therefore explores the potential of repeated projective operations to improve 1H→15N and 1H→15N→13C J-CP transfers in the presence of fast solvent chemical exchanges. It is found that while repeating J-CP provides little 1H→15N transfer advantages over a prolonged CP, multiple contacts that keep both the water and the labile protons effectively spin-locked can improve 1H→15N→13C transfers in the presence of chemical exchange. The ensuing Looped, Concatenated Cross Polarization (L-CCP) compensates for single J-CP losses by relying on the 13C's longer lifetimes, leading to a kind of "algorithmic cooling" that can provide high polarization for the 15N as well as carbonyl and alpha 13Cs. This can facilitate certain experiments, as demonstrated with triple resonance experiments on intrinsically disordered proteins involving labile, chemically exchanging protons.
Collapse
Affiliation(s)
- Mihajlo Novakovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sundaresan Jayanthi
- Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547, Kerala, India
| | | | - Maria Grazia Concilio
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jihyun Kim
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Columbus
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|