1
|
Wu L, Zhang L, Guo J, Gao J, Ding Y, Ke J, He C. Catalytic Asymmetric Construction of C- and Si-Stereogenic Silacyclopentanes via Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202413753. [PMID: 39138131 DOI: 10.1002/anie.202413753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
Silacycles have exhibited significant potential for application in the fields of medicinal chemistry, agrochemistry, and materials science. Accordingly, the development of effective methods for synthesizing these compounds has attracted increasing attention. Here, we report an efficient Cu-catalyzed enantioselective hydrosilylation of arylmethylenecyclopropanes with hydrosilanes, that allows the rapid assembly of various enantioenriched carbon- and silicon-stereogenic silacyclopentanes in good yields with excellent enantioselectivities and diastereoselectivities under mild conditions. Further stereospecific transformation of the Si-H bond on the chiral silicon center expands the diversity of these C- and Si-stereogenic silacyclopentanes.
Collapse
Affiliation(s)
- Liexin Wu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiandong Guo
- Institute for Innovative Materials and Energy School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Jihui Gao
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yang Ding
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
2
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
3
|
Fu B, Wang L, Chen K, Yuan X, Yin J, Wang S, Shi D, Zhu B, Guan W, Zhang Q, Xiong T. Enantioselective Copper-Catalyzed Sequential Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202407391. [PMID: 39023320 DOI: 10.1002/anie.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Despite impressive advances in the construction of enantioenriched silacarbocycles featuring silicon-stereogenic centers via a selection of well-defined sila-synthons, the development of a more convenient and economic method with readily available starting materials is significantly less explored and remains a considerable challenge. Herein, we report the first example of copper-catalyzed sequential hydrosilylation of readily accessible methylenecyclopropanes (MCPs) and primary silanes, affording an efficient and convenient route to a wide range of chiral silacyclopentanes bearing consecutive silicon- and carbon-stereogenic centers with excellent enantio- and diastereoselectivities (generally ≥98 % ee, >25 : 1 dr). Mechanistic studies reveal that these reactions combine copper-catalyzed intermolecular ring-opening hydrosilylation of aryl MCPs and intramolecular asymmetric hydrosilylation of the resultant Z/E mixture of homoallylic silanes.
Collapse
Affiliation(s)
- Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130024, China
| | - Lianghua Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Kexin Chen
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
4
|
Tang X, Tang Y, Peng J, Du H, Huang L, Gao J, Liu S, Wang D, Wang W, Gao L, Lan Y, Song Z. Ligand-Controlled Regiodivergent Ring Expansion of Benzosilacyclobutenes with Alkynes en Route to Axially Chiral Silacyclohexenyl Arenes. J Am Chem Soc 2024; 146:26639-26648. [PMID: 39305495 DOI: 10.1021/jacs.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
A ligand-controlled regiodivergent and enantioselective ring expansion of benzosilacyclobutenes with internal naphthyl alkynes has been achieved by adjusting the ligand cavity size. The ligand (S)-8H-binaphthyl phosphoramidite, featuring small methyl groups on its arms, provides a spacious cavity that favors sterically demanding Si-Csp3 ring expansion, predominantly yielding axially chiral (S)-1-silacyclohexenyl arenes. In contrast, the ligand (R)-spiro phosphoramidite, with bulky t-Bu groups on its arms, offers a compact cavity that facilitates less sterically demanding Si-Csp2 ring expansion, leading primarily to axially chiral (S)-2-silacyclohexenyl arenes. Density functional theory calculations delineate distinct mechanistic pathways for each ring expansion route and elucidate their regio- and enantioselectivity.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yulang Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ju Peng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiahui Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shiyang Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dongxu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Li J, Xu S, Liang J, Zheng J, Li P, Wang J, Li B. Ruthenium-Catalyzed Sequential Hydrosilylation/Dehydrogenation and C-H Silylation: Synthesis of Six-Membered Indole Silacycles and Pyrrole Silyl Ether Cycles. Org Lett 2024; 26:6142-6147. [PMID: 38995672 DOI: 10.1021/acs.orglett.4c01949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Selective dehydrogenative C-H silylation is one of the most powerful tools to synthesize silacycles. Herein, we developed Ru-catalyzed sequential hydrosilylation/C-H silylation of allyl-indoles and dehydrogenative O-H/C-H silylation of pyrrole phenols. Both six-membered indole silacycles and pyrrole silyl ether cycles were successfully synthesized with good functional group tolerance. Furthermore, the RuHCl(CO)(PPh3)3 catalyst exhibited high reaction compatibility in hydrosilylation of alkene, dehydrogenative O-H silylation, and C-H silylation.
Collapse
Affiliation(s)
- Jiefang Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Shanshan Xu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jieyu Liang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Juanjuan Zheng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ping Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of People's Republic of China
| | - Bin Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang, Guangdong 515200, People's Republic of China
| |
Collapse
|
6
|
Willcox DR, Cocco E, Nichol GS, Carlone A, Thomas SP. Catalytic Access to Diastereometrically Pure Four- and Five-Membered Silyl-Heterocycles Using Transborylation. Angew Chem Int Ed Engl 2024; 63:e202401737. [PMID: 38578174 DOI: 10.1002/anie.202401737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Silyl-heterocycles offer a unique handle to expand and explore chemical space, reactivity, and functionality. The shortage of catalytic methods for the preparation of diverse and functionalized silyl-heterocycles however limits widespread exploration and exploitation. Herein the borane-catalyzed intramolecular 1,1-carboboration of silyl-alkynes has been developed for the synthesis of 2,3-dihydrosilolyl and silylcyclobut-2-enyl boronic esters. Successful, catalytic carboboration has been achieved on a variety of functionally diverse silyl-alkynes, using a borane catalyst and transborylation-enabled turnover. Mechanistic studies, including 13C-labelling, computational studies, and single-turnover experiments, suggest a reaction pathway proceeding by 1,2-hydroboration, 1,1-carboboration, and transborylation to release the alkenyl boronic ester product and regenerate the borane catalyst.
Collapse
Affiliation(s)
- Dominic R Willcox
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, United Kingdom
| | - Emanuele Cocco
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, United Kingdom
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, via Vetoio, 67100, L'Aquila, Italy
| | - Gary S Nichol
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, United Kingdom
| | - Armando Carlone
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, via Vetoio, 67100, L'Aquila, Italy
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Hayashi D, Tsuda T, Shintani R. Palladium-Catalyzed Skeletal Rearrangement of Substituted 2-Silylaryl Triflates via 1,5-C-Pd/C-Si Bond Exchange. Angew Chem Int Ed Engl 2023; 62:e202313171. [PMID: 37935641 DOI: 10.1002/anie.202313171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
A palladium-catalyzed skeletal rearrangement of 2-(2-allylarylsilyl)aryl triflates has been developed to give highly fused tetrahydrophenanthrosilole derivatives via unprecedented 1,5-C-Pd/C-Si bond exchange. The reaction pathways can be switched toward 4-membered ring-forming C(sp2 )-H alkylation by tuning the reaction conditions to give completely different products, fused dihydrodibenzosilepin derivatives, from the same starting materials. The inspection of the reaction conditions revealed the importance of carboxylates in promoting the C-Pd/C-Si bond exchange.
Collapse
Affiliation(s)
- Daigo Hayashi
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tomohiro Tsuda
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Müller MP, Hinz A. Strain-Driven, Non-Catalysed Ring Expansion of Silicon Heterocycles. Chemistry 2023; 29:e202302311. [PMID: 37489573 DOI: 10.1002/chem.202302311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Silacycles are ubiquitous building blocks. Small silacycles can typically be expanded catalytically. A silirane, silirene and phosphasilirene as well as a siletane and a silolene were prepared starting from the base-free bromosilylene [(dtbp Cbz)SiBr] (dtbp Cbz=1,8-bis(3,5-ditertbutylphenyl)-3,6-ditertbutylcarbazolyl). As these heterocycles were derived from a dicoordinated silylene, they are susceptible to reactions with an external base. The three-membered silacycles readily undergo non-catalysed ring expansion reactions with isonitriles yielding the related four-membered silacycles. Surprisingly, the ring-expanded derivatives of the silirane undergo up to two further isomerisation reactions, first by enamine formation and then by another ring expansion. DFT computations were utilised to gauge the scope of this reactivity pattern. Three-membered silacycles should essentially universally undergo a ring expansion with isonitriles, while for four-membered silacycles, only very few instances are predicted to accommodate more challenging kinetic requirements of this ring expansion. Larger silacycles lack the ring strain energy required for this ring expansion reaction and are not expected to be expanded.
Collapse
Affiliation(s)
- Maximilian P Müller
- Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| | - Alexander Hinz
- Karlsruhe Institute of Technology, Institute for Inorganic Chemistry, Engesserstr. 15, 76131, Karlsruhe, Germany
| |
Collapse
|
9
|
Zhu WK, Zhu HJ, Fang XJ, Ye F, Cao J, Xu Z, Xu LW. Rhodium-Catalyzed Hydrolytic Cleavage of the Silicon-Carbon Bond of Silacyclobutanes to Access Silanols. Org Lett 2023; 25:7186-7191. [PMID: 37754348 DOI: 10.1021/acs.orglett.3c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Herein, we report the first rhodium-catalyzed hydrolytic cleavage of the silicon-carbon bond in silacyclobutanes using water as the reactant. A series of silacyclobutanes could be employed in this reaction in the presence of the Rh/BINAP complex, resulting in the corresponding silanols in good yields. Additionally, a chiral 1,1,4,4-tetraaryl-2,3-O-isopropylidene-l-threitol-derived phosphoramidite ligand could be used in this reaction to yield Si-stereogenic silanol with promising enantioselectivity.
Collapse
Affiliation(s)
- Wei-Ke Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hua-Jie Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
10
|
Ramesh E, Nandawadekar LD, Rao RS, Reddy DS. Scalable Synthesis of Silacyclohexanones and Ready Access to Silicon Building Blocks. Org Lett 2023; 25:6881-6885. [PMID: 37683284 DOI: 10.1021/acs.orglett.3c02561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
A simple and efficient two-step method for the synthesis of silacyclohexanones starting from bis(bromoethylsilanes) using TosMIC is presented. The prepared silacyclohexanones were transformed to nine different heterocycles with silicon incorporation. In addition, the developed methodology was used for the synthesis of a sila analogue of the HDAC6 inhibitor tubastatin A.
Collapse
Affiliation(s)
- Eagala Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Laxman D Nandawadekar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramana Sreenivasa Rao
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - D Srinivasa Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
11
|
Chen F, Liu L, Zeng W. Synthetic strategies to access silacycles. Front Chem 2023; 11:1200494. [PMID: 37398981 PMCID: PMC10313416 DOI: 10.3389/fchem.2023.1200494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
In comparison with all-carbon parent compounds, the incorporation of Si-element into carboskeletons generally endows the corresponding sila-analogues with unique biological activity and physical-chemical properties. Silacycles have recently shown promising application potential in biological chemistry, pharmaceuticals industry, and material chemistry. Therefore, the development of efficient methodology to assemble versatile silacycles has aroused increasing concerns in the past decades. In this review, recent advances in the synthesis of silacycle-system are briefly summarized, including transition metal-catalytic and photocatalytic strategies by employing arylsilanes, alkylsilane, vinylsilane, hydrosilanes, and alkynylsilanes, etc. as starting materials. Moreover, a clear presentation and understanding of the mechanistic aspects and features of these developed reaction methodologies have been high-lighted.
Collapse
|
12
|
Qi L, Pan QQ, Wei XX, Pang X, Liu Z, Shu XZ. Nickel-Catalyzed Reductive [4 + 1] Sila-Cycloaddition of 1,3-Dienes with Dichlorosilanes. J Am Chem Soc 2023. [PMID: 37285283 DOI: 10.1021/jacs.3c04209] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transition-metal-catalyzed sila-cycloaddition has been a promising tool for accessing silacarbocycle derivatives, but the approach has been limited to a selection of well-defined sila-synthons. Herein, we demonstrate the potential of chlorosilanes, which are industrial feedstock chemicals, for this type of reaction under reductive nickel catalysis. This work extends the scope of reductive coupling from carbocycle to silacarbocycle synthesis and from single C-Si bond formation to sila-cycloaddition reactions. The reaction proceeds under mild conditions and shows good substrate scope and functionality tolerance, and it offers new access to silacyclopent-3-enes and spiro silacarbocycles. The optical properties of several spiro dithienosiloles as well as structural variations of the products are demonstrated.
Collapse
Affiliation(s)
- Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
13
|
Liu MM, Xu Y, He C. Catalytic Asymmetric Dehydrogenative Si-H/N-H Coupling: Synthesis of Silicon-Stereogenic Silazanes. J Am Chem Soc 2023; 145:11727-11734. [PMID: 37204933 DOI: 10.1021/jacs.3c02263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite growing progress in the construction of silazanes, the catalytic asymmetric synthesis of silicon-stereogenic silazanes is significantly less explored and remains a considerable challenge. Herein, we report a highly enantioselective synthesis of silicon-stereogenic silazanes via catalytic dehydrogenative coupling of dihydrosilanes with anilines. The reaction readily produces a wide range of chiral silazanes and bis-silazanes in excellent yields and stereoselectivities (up to 99% ee). Further utility of this process is demonstrated by the construction of polycarbosilazanes featuring configurational main chain silicon-stereogenic chirality. In addition, the straightforward transformation of the enantioenriched silazanes delivers various chiral silane compounds in a stereospecific fashion, illustrating their potential utilities as synthons for the synthesis of novel silicon-containing functional molecules.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yankun Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
14
|
Fan Y, Jing J, Tong R, Tu X, Gao L, Wang W, Song Z. Intramolecular Ring Expansion of 3-Silaazetidine with Alkynes Enabled by Pd-Catalyzed Si-C Bond Activation. Org Lett 2023; 25:455-460. [PMID: 36472378 DOI: 10.1021/acs.orglett.2c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An intramolecular ring expansion of in situ formed 3-silaazetidine with internal alkynes has been developed via Pd-catalyzed Si-C bond activation. The reaction gives rise to 6,5- and 6,6-fused bicyclic 1,3-azasilines, in which the silicon atom locates at the ring junction position.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jun Jing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruiqi Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Tu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
Lee D, Shintani R. Palladium-catalyzed synthesis of 4-sila-4 H-benzo[ d][1,3]oxazines by intramolecular Hiyama coupling. Chem Sci 2023; 14:4114-4119. [PMID: 37063809 PMCID: PMC10094166 DOI: 10.1039/d2sc06425a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
A palladium-catalyzed synthesis of 4-sila-4H-benzo[d][1,3]oxazines, silicon-switched analogs of biologically relevant 4H-benzo[d][1,3]oxazines, was developed by the intramolecular Hiyama coupling of 3-amido-2-(arylsilyl)aryl triflates.
Collapse
Affiliation(s)
- Donghyeon Lee
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
16
|
Fourteen-member silacycle built by cascade reactions induced by a platinum catalyst. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Shi Y, Shi X, Zhang J, Qin Y, Li B, Zhao D. Sila-spirocyclization involving unstrained C(sp 3)-Si bond cleavage. Nat Commun 2022; 13:6697. [PMID: 36335183 PMCID: PMC9637223 DOI: 10.1038/s41467-022-34466-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022] Open
Abstract
C - Si Bond cleavage is one of the key elemental steps for a wide variety of silicon-based transformations. However, the cleavage of unstrained Si-C(sp3) bonds catalyzed by transition metal are still in their infancy. They generally involve the insertion of a M - C(sp2) species into the C - Si bond and consequent intramolecular C(sp2)‒Si coupling to exclusively produce siloles. Here we report the Pd-catalyzed sila-spirocyclization, in which the Si-C(sp3) bond is activated by the insertion of a M - C(sp3) species and followed by the formation of a new C(sp3)‒Si bond, allowing the construction of diverse spirosilacycles. This reactivity mode, which is strongly supported by DFT calculations may open an avenue for the Si-C(sp3) bond cleavage and silacycle synthesis.
Collapse
Affiliation(s)
- Yufeng Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaonan Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bo Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91106, USA.
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Luo Z, Wang Y, Wang Z, Gao J, Li Q, Li H, Hu Y. Synthesis of Bis(methoxymethyl)silanes and Their Application in MgCl 2-Supported Ziegler–Natta Propylene Polymerization as External Donors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhi Luo
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuanjie Wang
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Wang
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jialei Gao
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Qian Li
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huayi Li
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Youliang Hu
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
19
|
Schwab C, Voss A, Strohmann C. Crystal structure and Hirshfeld surface analysis of N-{[diphen-yl(vin-yl)sil-yl]meth-yl}-2-methyl-propan-2-ammonium chloride. Acta Crystallogr E Crystallogr Commun 2022; 78:1039-1043. [PMID: 36250106 PMCID: PMC9535837 DOI: 10.1107/s2056989022009112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022]
Abstract
N-{[Diphen-yl(vin-yl)sil-yl]meth-yl}-2-methyl-propan-2-amine, C19H25NSi, is a newly synthesized secondary amino-methyl-silane that can be used, for example, to study carboli-thia-tion reactions of vinyl-silanes. Because the neutral compound did not crystallize well, the hydro-chloride salt, C19H26NSi+·Cl-, was formed, in which the two chloride ions in the asymmetric unit have crystallographic site symmetry. An unusually long Si-C bond of 1.9117 (10) Å is observed in the cation, which may be ascribed to electronic effects due to the β N+ species. In the crystal, the cations and anions are linked by N-H⋯Cl hydrogen bonds to generate [001] chains. To further investigate the inter-molecular inter-actions, a Hirshfeld surface analysis was performed, which showed that H⋯H, C⋯H/H⋯C and H⋯Cl/Cl⋯H contacts contribute 70.4, 20.0 and 8.3%, respectively.
Collapse
Affiliation(s)
- Christoph Schwab
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Andreas Voss
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Carsten Strohmann
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
20
|
Ma C, Fan Y, Zheng C, Gao L, Wang W, Ke B, Song Z. (4 + 2) Annulation of Cl -NH 3+CH 2SiMe 2CH 2Cl and Propynones for the Synthesis of 1,3-Azasilinones. Org Lett 2022; 24:6631-6636. [PMID: 36054503 DOI: 10.1021/acs.orglett.2c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A useful 1,3-N,Si reagent (Cl-NH3+CH2SiMe2CH2Cl) and its (4 + 2) annulation with propynones have been developed. The (4 + 2) annulation is promoted by NaHCO3 via an intermolecular N-1,4-addition/intramolecular alkylation process, leading to 1,3-azasilinones in good yields. Diverse functionalization of the alkene, carbonyl, and nitrogen moieties on the 1,3-azasilinone has been demonstrated, showcasing the potential of the approach in the synthesis of bioactive molecules containing silaazacycles.
Collapse
Affiliation(s)
- Chang Ma
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunmei Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Zheng Y, Lu W, Xie Z, Chen K, Xiang H, Yang H. Visible-Light-Induced, Palladium-Catalyzed Annulation of 1,3-Dienes to Construct Vinyl N-Heterocycles. Org Lett 2022; 24:5407-5411. [PMID: 35848222 DOI: 10.1021/acs.orglett.2c02101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, a photoinduced palladium-catalyzed annulation of 1,3-dienes with bifunctional halognated alkylamines has been developed, offering a facile route to access a broad range of vinylpyrrolidines. The reactivity profile of this protocol was able to be readily manipulated to assemble vinylpyrrolidine and vinlysilaazacycle. Remarkably, the utility of this strategy was further illustrated in the construction of complex and biologically important molecules as well as the diversity-oriented transformations of the resulting product.
Collapse
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Weidong Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhenzhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Haoyue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
22
|
Zhou S, Tu X, He Y, Gao L, Song ZL. Ring rearrangement of 1,3‐azasilinyl‐4‐epoxides to synthesize 2silamorpolines by a Si‐C bond migration/oxidation process. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Song Zhou
- Sichuan University School of Pharmacy CHINA
| | - Xiaoyu Tu
- Sichuan University School of Pharmacy CHINA
| | | | - Lu Gao
- Sichuan University School of Pharmacy CHINA
| | - Zhen Lei Song
- Sichuan University West China School of Pharmacy Renmin Sout Road, 3rd Section, 17# 610041 Chengdu CHINA
| |
Collapse
|
23
|
Tang X, Zhang Y, Tang Y, Li Y, Zhou J, Wang D, Gao L, Su Z, Song Z. Ring Expansion of Silacyclobutanes with Allenoates to Selectively Construct 2- or 3-( E)-Enoate-Substituted Silacyclohexenes. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoxiao Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yulang Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiajing Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Duyang Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Gao L, Song Z, Wang W. Synthetic Approaches for the Construction of Five- and Six-Membered Silaazacycles. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1755-3832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractSilaazacycles (or azasilacycles), containing both nitrogen and silicon atoms, are appealing ring structures in the development of silicon-containing functional molecules. The development of general and efficient methods towards these motifs has therefore attracted considerable attention from synthetic chemists. This short review intends to highlight representative advances in the synthesis of five- and six-membered silaazacycles.1 Introduction2 Five-Membered Silaazacycles2.1 Five-Membered Silaazacycles bearing a 1,2-N/Si Moiety2.2 Five-Membered Silaazacycles bearing a 1,3-N/Si Moiety3 Six-Membered Silaazacycles3.1 Six-Membered Silaazacycles bearing a 1,2-N/Si Moiety3.2 Six-Membered Silaazacycles bearing a 1,3-N/Si Moiety3.3 Six-Membered Silaazacycles bearing a 1,4-N/Si Moiety4 Conclusion
Collapse
|
25
|
Cui D, Feng Y, Gan Y, Yin J, Wang W, Fan Y, Gao L, Ke B, Song Z. (3 + 2)-Annulation of 1,3- N, Si-tetraorganosilane reagents TsHNCH 2SiBnR 1R 2 with arynes for efficient synthesis of 3-silaindolines. Org Chem Front 2022. [DOI: 10.1039/d2qo01075e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,3-N,Si-Tetraorganosilane reagents TsHNCH2SiBnR1R2 were developed as robust synthons to prepare 3-silaindolines via a Cs2CO3-promoted (3 + 2)-annulation reaction with arynes.
Collapse
Affiliation(s)
- Deyun Cui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ying Feng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Gan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan university, Chengdu, 610041, China
| | - Jiaqi Yin
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan university, Chengdu, 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan university, Chengdu, 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
26
|
Guo J, Liu S, Pang Q, Zhang H, Gao L, Chen L, Song Z. Synthesis of Silacyclohexanones from Divinylsilanes and Allylamines by a Rh-Catalyzed Cyclization. Org Lett 2021; 24:726-730. [PMID: 34967629 DOI: 10.1021/acs.orglett.1c04183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient synthesis of silacyclohexanones bearing a variety of silyl substituents has been developed by a [Rh(coe)2Cl]2/PCy3-catalyzed cyclization of divinylsilanes with Jun's allylamine. The silacyclohexanones can be oxidized with DDQ to give the corresponding silacyclohexadienones, which are further transformed into silicon analog of 2-deoxystreptamine or exo-alkylidenesilacyclohexadienes.
Collapse
Affiliation(s)
- Jiawei Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Song Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qinjiao Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Hongyun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Chen
- Department of Pharmacy and Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|