1
|
Gallego L, Woods JF, Butti R, Szwedziak P, Vargas Jentzsch A, Rickhaus M. Shape-Assisted Self-Assembly of Hexa-Substituted Carpyridines into 1D Supramolecular Polymers. Angew Chem Int Ed Engl 2024; 63:e202318879. [PMID: 38237056 DOI: 10.1002/anie.202318879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The extent of the influence that molecular curvature plays on the self-assembly of supramolecular polymers remains an open question in the field. We began addressing this fundamental question with the introduction of "carpyridines", which are saddle-shaped monomers that can associate with one another through π-π interactions and in which the rotational and translational movements are restricted. The topography displayed by the monomers led, previously, to the assembly of highly ordered 2D materials even in the absence of strong directional interactions such as hydrogen bonding. Here, we introduce a simple strategy to gain control over the dimensionality of the formed structures yielding classical unidimensional polymers. These have been characterized using well-established protocols allowing us to determine and confirm the self-assembly mechanism of both fibers and sheets. The calculated interaction energies are significantly higher than expected for flexible self-assembling units lacking classical "strong" non-covalent interactions. The versatility of this supramolecular unit to assemble into either supramolecular fibers or 2D sheets with strong association energies highlights remarkably well the potential and importance of molecular shape for the design of supramolecular materials and the applications thereof.
Collapse
Affiliation(s)
- Lucía Gallego
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Joseph F Woods
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachele Butti
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Piotr Szwedziak
- Centre for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Andreas Vargas Jentzsch
- SAMS Research Group, University of Strasbourg, Institut Charles Sadron, CNRS, Rue du Loess 23, 67200, Strasbourg, France
| | - Michel Rickhaus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest-Ansermet, 1205, Geneva, Switzerland
| |
Collapse
|
2
|
Jańczuk ZZ, Jedrych A, Parzyszek S, Gardias A, Szczytko J, Wojcik M. Dynamically Tunable Assemblies of Superparamagnetic Nanoparticles Stabilized with Liquid Crystal-like Ligands in Organic Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2908. [PMID: 37947752 PMCID: PMC10648093 DOI: 10.3390/nano13212908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
The process of arranging magnetic nanoparticles (MNPs) into long-range structures that can be dynamically and reversibly controlled is challenging, although interesting for emerging spintronic applications. Here, we report composites of MNPs in excess of LC-like ligands as promising materials for MNP-based technologies. The organic part ensures the assembly of MNP into long-range ordered phases as well as precise and temperature-reversible control over the arrangement. The dynamic changes are fully reversible, which we confirm using X-ray diffraction (XRD). This methodology allows for the precise control of the nanomaterial's structure in a thin film at different temperatures, translating to variable unit cell parameters. The composition of the materials (XPS, TGA), their structure (XRD), and magnetic properties (SQUID) were performed. Overall, this study confirms that LC-like materials provide the ability to dynamically control the magnetic nanoparticles in thin films, particularly the reversible control of their self-organization.
Collapse
Affiliation(s)
- Zuzanna Z. Jańczuk
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland; (Z.Z.J.); (A.J.); (S.P.)
| | - Agnieszka Jedrych
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland; (Z.Z.J.); (A.J.); (S.P.)
| | - Sylwia Parzyszek
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland; (Z.Z.J.); (A.J.); (S.P.)
| | - Anita Gardias
- Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland; (A.G.); (J.S.)
| | - Jacek Szczytko
- Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland; (A.G.); (J.S.)
| | - Michal Wojcik
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland; (Z.Z.J.); (A.J.); (S.P.)
| |
Collapse
|
3
|
Jia H, Yin B, Chen J, Zou Y, Wang H, Zhang Y, Ma T, Shi Q, Yao J, Bai S, Zhang C. A Paramagnetic Compass Based on Lanthanide Metal-Organic Framework. Angew Chem Int Ed Engl 2023; 62:e202309073. [PMID: 37427886 DOI: 10.1002/anie.202309073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Macroscopic compass-like magnetic alignment at low magnetic fields is natural for ferromagnetic materials but is seldomly observed in paramagnetic materials. Herein, we report a "paramagnetic compass" that magnetically aligns under ∼mT fields based on the single-crystalline framework constructed by lanthanide ions and organic ligands (Ln-MOF). The magnetic alignment is attributed to the Ln-MOF's strong macroscopic anisotropy, where the highly-ordered structure allows the Ln-ions' molecular anisotropy to be summed according to the crystal symmetry. In tetragonal Ln-MOFs, the alignment is either parallel or perpendicular to the field depending on the easiest axis of the molecular anisotropy. Reversible switching between the two alignments is realized upon the removal and re-adsorption of solvent molecules filled in the framework. When the crystal symmetry is lowered in monoclinic Ln-MOFs, the alignments become even inclined (47°-66°) to the field. These fascinating properties of Ln-MOFs would encourage further explorations of framework materials containing paramagnetic centers.
Collapse
Affiliation(s)
- Hao Jia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baipeng Yin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiaying Chen
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Hong Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongmei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Rao A, Roy S, Jain V, Pillai PP. Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25248-25274. [PMID: 35715224 DOI: 10.1021/acsami.2c05378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The creation of matter with varying degrees of complexities and desired functions is one of the ultimate targets of self-assembly. The ability to regulate the complex interactions between the individual components is essential in achieving this target. In this direction, the initial success of controlling the pathways and final thermodynamic states of a self-assembly process is promising. Despite the progress made in the field, there has been a growing interest in pushing the limits of self-assembly processes. The main inception of this interest is that the intended self-assembled state, with varying complexities, may not be "at equilibrium (or at global minimum)", rendering free energy minimization unsuitable to form the desired product. Thus, we believe that a thorough understanding of the design principles as well as the ability to predict the outcome of a self-assembly process is essential to form a collection of the next generation of complex matter. The present review highlights the potent role of finely tuned interparticle interactions in nanomaterials to achieve the preferred self-assembled structures with the desired properties. We believe that bringing the design and prediction to nanoparticle self-assembly processes will have a similar effect as retrosynthesis had on the logic of chemical synthesis. Along with the guiding principles, the review gives a summary of the different types of products created from nanoparticle assemblies and the functional properties emerging from them. Finally, we highlight the reasonable expectations from the field and the challenges lying ahead in the creation of complex and evolvable matter.
Collapse
Affiliation(s)
- Anish Rao
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Sumit Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Vanshika Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| |
Collapse
|