1
|
Li Z, Saruyama M, Asaka T, Teranishi T. Waning-and-waxing shape changes in ionic nanoplates upon cation exchange. Nat Commun 2024; 15:4899. [PMID: 38851762 PMCID: PMC11162454 DOI: 10.1038/s41467-024-49294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Flexible control of the composition and morphology of nanocrystals (NCs) over a wide range is an essential technology for the creation of functional nanomaterials. Cation exchange (CE) is a facile method by which to finely tune the compositions of ionic NCs, providing an opportunity to obtain complex nanostructures that are difficult to form using conventional chemical synthesis procedures. However, due to their robust anion frameworks, CE cannot typically be used to modify the original morphology of the host NCs. In this study, we report an anisotropic morphological transformation of Cu1.8S NCs during CE. Upon partial CE of Cu1.8S nanoplates (NPLs) with Mn2+, the hexagonal NPLs are transformed into crescent-shaped Cu1.8S-MnS NPLs. Upon further CE, these crescent-shaped NPLs evolve back into completely hexagonal MnS NPLs. Comprehensive characterization of the intermediates reveals that this waxing-and-waning shape-evolution process is due to dissolution, redeposition, and intraparticle migration of Cu+ and S2-. Furthermore, in addition to Mn2+, this CE-induced transformation process occurs with Zn2+, Cd2+ and Fe3+. This finding presents a strategy by which to create heterostructured NCs with various morphologies and compositions under mild conditions.
Collapse
Affiliation(s)
- Zhanzhao Li
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan.
| | - Toru Asaka
- Division of Advanced Ceramics, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan.
| |
Collapse
|
2
|
Vigil SA, Moreno-Hernandez IA. Dissolution Heterogeneity Observed in Anisotropic Ruthenium Dioxide Nanocrystals via Liquid-Phase Transmission Electron Microscopy. J Am Chem Soc 2024; 146. [PMID: 38597585 PMCID: PMC11048125 DOI: 10.1021/jacs.3c13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Noble metal oxides such as ruthenium dioxide are highly active electrocatalysts for anodic reactions in acidic electrolytes, but dissolution during electrochemical operation impedes wide-scale applications in renewable energy technologies. Improving the fundamental understanding of the dissolution dynamics of application-relevant morphologies such as nanocrystals is critical for the grid-scale implementation of these materials. Herein, we report the nanoscale heterogeneity observed via liquid-phase transmission electron microscopy during ruthenium dioxide nanocrystal dissolution under oxidizing conditions. Single-crystalline ruthenium dioxide nanocrystals enabled the direct observation of dissolution along different crystallographic facets, allowing an unprecedented direct comparison of crystal facet stability. The nanoscale observations revealed substantial heterogeneity in the relative stability of crystallographic facets across different nanocrystals, attributed to the nanoscale strains present in these crystals. These findings highlight the importance of nanoscale heterogeneity in determining macroscale properties such as electrocatalyst stability and provide a characterization methodology that can be integrated into next-generation electrocatalyst discovery efforts.
Collapse
Affiliation(s)
- S. Avery Vigil
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | | |
Collapse
|
3
|
Liu C, Lin O, Pidaparthy S, Ni H, Lyu Z, Zuo JM, Chen Q. 4D-STEM Mapping of Nanocrystal Reaction Dynamics and Heterogeneity in a Graphene Liquid Cell. NANO LETTERS 2024; 24:3890-3897. [PMID: 38526426 DOI: 10.1021/acs.nanolett.3c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Chemical reaction kinetics at the nanoscale are intertwined with heterogeneity in structure and composition. However, mapping such heterogeneity in a liquid environment is extremely challenging. Here we integrate graphene liquid cell (GLC) transmission electron microscopy and four-dimensional scanning transmission electron microscopy to image the etching dynamics of gold nanorods in the reaction media. Critical to our experiment is the small liquid thickness in a GLC that allows the collection of high-quality electron diffraction patterns at low dose conditions. Machine learning-based data-mining of the diffraction patterns maps the three-dimensional nanocrystal orientation, groups spatial domains of various species in the GLC, and identifies newly generated nanocrystallites during reaction, offering a comprehensive understanding on the reaction mechanism inside a nanoenvironment. This work opens opportunities in probing the interplay of structural properties such as phase and strain with solution-phase reaction dynamics, which is important for applications in catalysis, energy storage, and self-assembly.
Collapse
Affiliation(s)
- Chang Liu
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Oliver Lin
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Saran Pidaparthy
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Haoyang Ni
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Zhiheng Lyu
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Couasnon T, Fritsch B, Jank MPM, Blukis R, Hutzler A, Benning LG. Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid-Phase Transmission Electron Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301904. [PMID: 37439408 PMCID: PMC10477898 DOI: 10.1002/advs.202301904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Liquid-Phase Transmission Electron Microscopy (LP-TEM) enables in situ observations of the dynamic behavior of materials in liquids at high spatial and temporal resolution. During LP-TEM, incident electrons decompose water molecules into highly reactive species. Consequently, the chemistry of the irradiated aqueous solution is strongly altered, impacting the reactions to be observed. However, the short lifetime of these reactive species prevent their direct study. Here, the morphological changes of goethite during its dissolution are used as a marker system to evaluate the influence of radiation on the changes in solution chemistry. At low electron flux density, the morphological changes are equivalent to those observed under bulk acidic conditions, but the rate of dissolution is higher. On the contrary, at higher electron fluxes, the morphological evolution does not correspond to a unique acidic dissolution process. Combined with kinetic simulations of the steady state concentrations of generated reactive species in the aqueous medium, the results provide a unique insight into the redox and acidity interplay during radiation induced chemical changes in LP-TEM. The results not only reveal beam-induced radiation chemistry via a nanoparticle indicator, but also open up new perspectives in the study of the dissolution process in industrial or natural settings.
Collapse
Affiliation(s)
- Thaïs Couasnon
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
| | - Birk Fritsch
- Department of Electrical, Electronic, and Communication EngineeringElectron DevicesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Department of Materials Science and EngineeringInstitute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)91058ErlangenGermany
| | - Michael P. M. Jank
- Fraunhofer Institute for Integrated Systems and Device Technology IISBSchottkystr. 1091058ErlangenGermany
| | - Roberts Blukis
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
- Leibniz‐Institut für KristallzüchtungMax‐Born Str. 212489BerlinGermany
| | - Andreas Hutzler
- Department of Electrical, Electronic, and Communication EngineeringElectron DevicesFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)91058ErlangenGermany
| | - Liane G. Benning
- GFZ German Research Center for GeosciencesTelegrafenberg14473PotsdamGermany
- Department of Earth SciencesFreie Universität Berlin12249BerlinGermany
| |
Collapse
|
5
|
Crook MF, Moreno-Hernandez IA, Ondry JC, Ciston J, Bustillo KC, Vargas A, Alivisatos AP. EELS Studies of Cerium Electrolyte Reveal Substantial Solute Concentration Effects in Graphene Liquid Cells. J Am Chem Soc 2023; 145:6648-6657. [PMID: 36939571 DOI: 10.1021/jacs.2c07778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Graphene liquid cell transmission electron microscopy is a powerful technique to visualize nanoscale dynamics and transformations at atomic resolution. However, the solution in liquid cells is known to be affected by radiolysis, and the stochastic formation of graphene liquid cells raises questions about the solution chemistry in individual pockets. In this study, electron energy loss spectroscopy (EELS) was used to evaluate a model encapsulated solution, aqueous CeCl3. First, the ratio between the O K-edge and Ce M-edge was used to approximate the concentration of cerium salt in the graphene liquid cell. It was determined that the ratio between oxygen and cerium was orders of magnitude lower than what is expected for a dilute solution, indicating that the encapsulated solution is highly concentrated. To probe how this affects the chemistry within graphene liquid cells, the oxidation of Ce3+ was measured using time-resolved parallel EELS. It was determined that Ce3+ oxidizes faster under high electron fluxes, but reaches the same steady-state Ce4+ concentration regardless of flux. The time-resolved concentration profiles enabled direct comparison to radiolysis models, which indicate rate constants and g-values of certain molecular species are substantially different in the highly concentrated environment. Finally, electron flux-dependent gold nanocrystal etching trajectories showed that gold nanocrystals etch faster at higher electron fluxes, correlating well with the Ce3+ oxidation kinetics. Understanding the effects of the highly concentrated solution in graphene liquid cells will provide new insight on previous studies and may open up opportunities to systematically study systems in highly concentrated solutions at high resolution.
Collapse
Affiliation(s)
- Michelle F Crook
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ivan A Moreno-Hernandez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Jim Ciston
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C Bustillo
- National Center for Electron Microscopy Facility, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alfred Vargas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Pei X, Wang T, Wan Y, Gu K, Lu Z, Wang J. Etching anisotropy in two-dimensional SnS layered crystals using a thiol-amine solvent mixture as an etchant. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Yan C, Byrne D, Ondry JC, Kahnt A, Moreno-Hernandez IA, Kamat GA, Liu ZJ, Laube C, Crook MF, Zhang Y, Ercius P, Alivisatos AP. Facet-selective etching trajectories of individual semiconductor nanocrystals. SCIENCE ADVANCES 2022; 8:eabq1700. [PMID: 35947667 PMCID: PMC11580828 DOI: 10.1126/sciadv.abq1700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The size and shape of semiconductor nanocrystals govern their optical and electronic properties. Liquid cell transmission electron microscopy (LCTEM) is an emerging tool that can directly visualize nanoscale chemical transformations and therefore inform the precise synthesis of nanostructures with desired functions. However, it remains difficult to controllably investigate the reactions of semiconductor nanocrystals with LCTEM, because of the highly reactive environment formed by radiolysis of liquid. Here, we harness the radiolysis processes and report the single-particle etching trajectories of prototypical semiconductor nanomaterials with well-defined crystalline facets. Lead selenide nanocubes represent an isotropic structure that retains the cubic shape during etching via a layer-by-layer mechanism. The anisotropic arrow-shaped cadmium selenide nanorods have polar facets terminated by either cadmium or selenium atoms, and the transformation trajectory is driven by etching the selenium-terminated facets. LCTEM trajectories reveal how nanoscale shape transformations of semiconductors are governed by the reactivity of specific facets in liquid environments.
Collapse
Affiliation(s)
- Chang Yan
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dana Byrne
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Justin C. Ondry
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, D-04318 Leipzig, Germany
| | | | - Gaurav A. Kamat
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zi-Jie Liu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christian Laube
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Leibniz Institute of Surface Engineering (IOM), Permoserstr. 15, D-04318 Leipzig, Germany
| | - Michelle F. Crook
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ye Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - A. Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Sung J, Bae Y, Park H, Kang S, Choi BK, Kim J, Park J. Liquid-Phase Transmission Electron Microscopy for Reliable In Situ Imaging of Nanomaterials. Annu Rev Chem Biomol Eng 2022; 13:167-191. [PMID: 35700529 DOI: 10.1146/annurev-chembioeng-092120-034534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liquid-phase transmission electron microscopy (LPTEM) is a powerful in situ visualization technique for directly characterizing nanomaterials in the liquid state. Despite its successful application in many fields, several challenges remain in achieving more accurate and reliable observations. We present LPTEM in chemical and biological applications, including studies for the morphological transformation and dynamics of nanoparticles, battery systems, catalysis, biomolecules, and organic systems. We describe the possible interactions and effects of the electron beam on specimens during observation and present sample-specific approaches to mitigate and control these electron-beam effects. We provide recent advances in achieving atomic-level resolution for liquid-phase investigation of structures anddynamics. Moreover, we discuss the development of liquid cell platforms and the introduction of machine-learning data processing for quantitative and objective LPTEM analysis.
Collapse
Affiliation(s)
- Jongbaek Sung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yuna Bae
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Hayoung Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Back Kyu Choi
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Zhang Q, Peng X, Nie Y, Zheng Q, Shangguan J, Zhu C, Bustillo KC, Ercius P, Wang L, Limmer DT, Zheng H. Defect-mediated ripening of core-shell nanostructures. Nat Commun 2022; 13:2211. [PMID: 35468902 PMCID: PMC9038757 DOI: 10.1038/s41467-022-29847-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding nanostructure ripening mechanisms is desirable for gaining insight on the growth and potential applications of nanoscale materials. However, the atomic pathways of nanostructure ripening in solution have rarely been observed directly. Here, we report defect-mediated ripening of Cd-CdCl2 core-shell nanoparticles (CSN) revealed by in-situ atomic resolution imaging with liquid cell transmission electron microscopy. We find that ripening is initiated by dissolution of the nanoparticle with an incomplete CdCl2 shell, and that the areas of the Cd core that are exposed to the solution are etched first. The growth of the other nanoparticles is achieved by generating crack defects in the shell, followed by ion diffusion through the cracks. Subsequent healing of crack defects leads to a highly crystalline CSN. The formation and annihilation of crack defects in the CdCl2 shell, accompanied by disordering and crystallization of the shell structure, mediate the ripening of Cd-CdCl2 CSN in the solution. Understanding the ripening of core-shell nanostructures is challenging. Here, the authors use liquid cell transmission electron microscopy to show that the atomic ripening pathway for Cd-CdCl2 core-shell nanoparticles is mediated by crack defects.
Collapse
Affiliation(s)
- Qiubo Zhang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xinxing Peng
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yifan Nie
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Qi Zheng
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Junyi Shangguan
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Chao Zhu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Linwang Wang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - David T Limmer
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California, Berkeley, CA, 94720, USA.,Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Kavli Energy Nanoscience Institute, Berkeley, CA, 94720, USA
| | - Haimei Zheng
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|