1
|
Li S, Wang S, Wang Y, He J, Li K, Gerken JB, Stahl SS, Zhong X, Wang J. Synergistic enhancement of electrochemical alcohol oxidation by combining NiV-layered double hydroxide with an aminoxyl radical. Nat Commun 2025; 16:266. [PMID: 39747151 PMCID: PMC11697391 DOI: 10.1038/s41467-024-55616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Electrochemical alcohol oxidation (EAO) represents an effective method for the production of high-value carbonyl products. However, its industrial viability is hindered by suboptimal efficiency stemming from low reaction rates. Here, we present a synergistic electrocatalysis approach that integrates an active electrode and aminoxyl radical to enhance the performance of EAO. The optimal aminoxyl radical (4-acetamido-2,2,6,6-tetramethylpiperidine 1-oxyl) and Ni0.67V0.33-layered double hydroxide (LDH) are screen as cooperative electrocatalysts by integrating theoretical predictions and experiments. The Ni0.67V0.33-LDH facilitates the adsorption and activation of N-(1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)acetamide (ACTH) via interactions with ketonic oxygen, thereby improving selectivity and yield at high current densities. The electrolysis process is scaled up to produce 200 g of the steroid carbonyl product 8b (19-Aldoandrostenedione), achieving a yield of 91% and a productivity of 243 g h-1. These results represent a promising method for accelerating electron transfer to enhance alcohol oxidation, highlighting its potential for practical electrosynthesis applications.
Collapse
Affiliation(s)
- Suiqin Li
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China
| | - Shibin Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China
| | - Yuhang Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China
| | - Jiahui He
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China
| | - Kai Li
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China
| | - James B Gerken
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Xing Zhong
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China.
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P.R. China.
| |
Collapse
|
2
|
Mhaske K, Gangai S, Taneja N, Narayan R. Two-Fold Oxidative Coupling of Furan with Indole Provides Modular Access to a New Class of Tetra-(Hetero)Arylated Furans with Up to Four Different Substituents. Chemistry 2024; 30:e202402929. [PMID: 39268636 DOI: 10.1002/chem.202402929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Highly arylated propeller-shaped heteroarenes constitute an intriguing class of molecular scaffolds for material science applications. Among these, tetraarylated furans demonstrate differentiated properties as compared to other similar heterocyclic cores. The synthetic complexity to access tetraarylated furans increases significantly with increasing number of different peripheral aryl groups. There are only a very limited number of methodologies available to access furans with four different (hetero)aryl substituents. Notably, none of these involve direct oxidative coupling on the furan core as the method of choice. Herein, we report the first methodology based on a sequential two-fold oxidative C-C coupling of furans with indoles to access bis(indolyl)furans (BIFs) - a new class of 'extremely congested' tetra-(hetero)arylated furans with up to four different substituents. The reaction is mediated by inexpensive, earth-abundant FeCl3⋅6H2O and displays high efficiency, wide substrate scope, modularity and aqueous compatibility. Moreover, we also present the first validation of the distinct aggregation-caused quenching (ACQ) property of the tetraarylated furans beyond only phenyls as peripheral groups and disclose new mechanistic underpinnings for the same.
Collapse
Affiliation(s)
- Krishna Mhaske
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Shon Gangai
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Neha Taneja
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Rishikesh Narayan
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| |
Collapse
|
3
|
Zhang Q, Zhang J, Qian H, Ma S. Aerobic Oxidation of PMB Ethers to Carboxylic Acids. Chemistry 2024; 30:e202401815. [PMID: 38925594 DOI: 10.1002/chem.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The first aerobic protocol of direct transformation of p-methoxybenzyl (PMB) ethers to carboxylic acids efficiently with Fe(NO3)3 ⋅ 9H2O and TEMPO as catalysts at room temperature has been developed. The reaction accommodates C-Br bond, terminal/non-terminal C-C triple bond, amide, cyano, nitro, ester, and trifluoromethyl groups. Even highly selective oxidative deprotection of different benzylic PMB ethers has been realized. The reaction has been successfully applied to the total synthesis of natural product, (R)-6-hydroxy-7,9-octadecadiynoic acid, demonstrating the practicality of the method. Based on experimental studies, a possible mechanism involving oxygen-stabilized benzylic cation has been proposed.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Jiabin Zhang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang Province, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
4
|
Jesse KA, Anderson JS. Leveraging ligand-based proton and electron transfer for aerobic reactivity and catalysis. Chem Sci 2024; 15:d4sc03896g. [PMID: 39386904 PMCID: PMC11460188 DOI: 10.1039/d4sc03896g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024] Open
Abstract
While O2 is an abundant, benign, and thermodynamically potent oxidant, it is also kinetically inert. This frequently limits its use in synthetic transformations. Correspondingly, direct aerobic reactivity with O2 often requires comparatively harsh or forcing conditions to overcome this kinetic barrier. Forcing conditions limit product selectivity and can lead to over oxidation. Alternatively, O2 can be activated by a catalyst to facilitate oxidative reactivity, and there are a variety of sophisticated examples where transition metal catalysts facilitate aerobic reactivity. Many efforts have focused on using metal-ligand cooperativity to facilitate the movement of protons and electrons for O2 activation. This approach is inspired by enzyme active sites, which frequently use the secondary sphere to facilitate both the activation of O2 and the oxidation of substrates. However, there has only recently been a focus on harnessing metal-ligand cooperativity for aerobic reactivity and, especially, catalysis. This perspective will discuss recent efforts to channel metal-ligand cooperativity for the activation of O2, the generation and stabilization of reactive metal-oxygen intermediates, and oxidative reactivity and catalysis. While significant progress has been made in this area, there are still challenges to overcome and opportunities for the development of efficient catalysts which leverage this biomimetic strategy.
Collapse
Affiliation(s)
- Kate A Jesse
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - John S Anderson
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| |
Collapse
|
5
|
Denkler LM, Aladahalli Shekar M, Ngan TSJ, Wylie L, Abdullin D, Engeser M, Schnakenburg G, Hett T, Pilz FH, Kirchner B, Schiemann O, Kielb P, Bunescu A. A General Iron-Catalyzed Decarboxylative Oxygenation of Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202403292. [PMID: 38735849 DOI: 10.1002/anie.202403292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
We report an iron-catalyzed decarboxylative C(sp3)-O bond-forming reaction under mild, base-free conditions with visible light irradiation. The transformation uses readily available and structurally diverse carboxylic acids, iron photocatalyst, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) derivatives as oxygenation reagents. The process exhibits a broad scope in acids possessing a wide range of stereoelectronic properties and functional groups. The developed reaction was applied to late-stage oxygenation of a series of bio-active molecules. The reaction leverages the ability of iron complexes to generate carbon-centered radicals directly from carboxylic acids by photoinduced carboxylate-to-iron charge transfer. Kinetic, electrochemical, EPR, UV/Vis, HRMS, and DFT studies revealed that TEMPO has a triple role in the reaction: as an oxygenation reagent, an oxidant to turn over the Fe-catalyst, and an internal base for the carboxylic acid deprotonation. The obtained TEMPO adducts represent versatile synthetic intermediates that were further engaged in C-C and C-heteroatom bond-forming reactions using commercial organo-photocatalysts and nucleophilic reagents.
Collapse
Affiliation(s)
- Luca Mareen Denkler
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Meghana Aladahalli Shekar
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Tak Shing Jason Ngan
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Dinar Abdullin
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Tobias Hett
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| | - Frank Hendrik Pilz
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Olav Schiemann
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Patrycja Kielb
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Ala Bunescu
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
6
|
Patra S, Nandasana BN, Valsamidou V, Katayev D. Mechanochemistry Drives Alkene Difunctionalization via Radical Ligand Transfer and Electron Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402970. [PMID: 38829256 PMCID: PMC11304296 DOI: 10.1002/advs.202402970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Indexed: 06/05/2024]
Abstract
A general and modular protocol is reported for olefin difunctionalization through mechanochemistry, facilitated by cooperative radical ligand transfer (RLT) and electron catalysis. Utilizing mechanochemical force and catalytic amounts of 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO), ferric nitrate can leverage nitryl radicals, transfer nitrooxy-functional group via RLT, and mediate an electron catalysis cycle under room temperature. A diverse range of activated and unactivated alkenes exhibited chemo- and regioselective 1,2-nitronitrooxylation under solvent-free or solvent-less conditions, showcasing excellent functional group tolerance. Mechanistic studies indicated a significant impact of mechanochemistry and highlighted the radical nature of this nitrative difunctionalization process.
Collapse
Affiliation(s)
- Subrata Patra
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Bhargav N. Nandasana
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Vasiliki Valsamidou
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Dmitry Katayev
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| |
Collapse
|
7
|
Lin Z, Ma S. Iron-catalyzed aerobic oxidation of silyl ethers to carboxylic acids. Chem Commun (Camb) 2024; 60:6272-6275. [PMID: 38808560 DOI: 10.1039/d4cc01234h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Direct aerobic oxidation of silyl ethers to carboxylic acids has been developed. The mild reaction conditions lead to a broad range of functional group compatibility. Different types of silyl groups have been investigated and selective deprotective oxidation has been realized. The reaction could be conducted under air.
Collapse
Affiliation(s)
- Zuizhi Lin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China.
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027, P. R. China
| |
Collapse
|
8
|
Thomas J, Mokkawes T, Senft L, Dey A, Gordon JB, Ivanovic-Burmazovic I, de Visser SP, Goldberg DP. Axial Ligation Impedes Proton-Coupled Electron-Transfer Reactivity of a Synthetic Compound-I Analogue. J Am Chem Soc 2024; 146:12338-12354. [PMID: 38669456 PMCID: PMC11305010 DOI: 10.1021/jacs.3c08950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The nature of the axial ligand in high-valent iron-oxo heme enzyme intermediates and related synthetic catalysts is a critical structural element for controlling proton-coupled electron-transfer (PCET) reactivity of these species. Herein, we describe the generation and characterization of three new 6-coordinate, iron(IV)-oxo porphyrinoid-π-cation-radical complexes and report their PCET reactivity together with a previously published 5-coordinate analogue, FeIV(O)(TBP8Cz+•) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato3-) (2) (Cho, K. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J. Am. Chem. Soc. 2012, 134, 7392-7399). The new complexes FeIV(O)(TBP8Cz+•)(L) (L = 1-methyl imidazole (1-MeIm) (4a), 4-dimethylaminopyridine (DMAP) (4b), cyanide (CN-)(4c)) can be generated from either oxidation of the ferric precursors or by addition of L to the Compound-I (Cpd-I) analogue at low temperatures. These complexes were characterized by UV-vis, electron paramagnetic resonance (EPR), and Mössbauer spectroscopies, and cryospray ionization mass spectrometry (CSI-MS). Kinetic studies using 4-OMe-TEMPOH as a test substrate indicate that coordination of a sixth axial ligand dramatically lowers the PCET reactivity of the Cpd-I analogue (rates up to 7000 times slower). Extensive density functional theory (DFT) calculations together with the experimental data show that the trend in reactivity with the axial ligands does not correlate with the thermodynamic driving force for these reactions or the calculated strengths of the O-H bonds being formed in the FeIV(O-H) products, pointing to non-Bell-Evans-Polanyi behavior. However, the PCET reactivity does follow a trend with the bracketed reduction potential of Cpd-I analogues and calculated electron affinities. The combined data suggest a concerted mechanism (a concerted proton electron transfer (CPET)) and an asynchronous movement of the electron/proton pair in the transition state.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thirakorn Mokkawes
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Laura Senft
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Aniruddha Dey
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ivana Ivanovic-Burmazovic
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr., 5-13, Haus D, 81377 München, Germany
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Yu Y, Lin J, Qin A, Wang H, Wang J, Wang W, Wu G, Zhang Q, Qian H, Ma S. Relay Catalysis for Selective Aerobic Oxidative Esterification of Primary Alcohols with Methanol. Org Lett 2024. [PMID: 38619221 DOI: 10.1021/acs.orglett.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Esters are bulk and fine chemicals and ubiquitous in polymers, bioactive compounds, and natural products. Their traditional synthetic approach is the esterification of carboxylic acids or their activated derivatives with alcohols. Herein, a bimetallic relay catalytic protocol was developed for the aerobic esterification of one alcohol in the presence of a slowly oxidizing alcohol, which has been identified as methanol. A concise synthesis of phlomic acid was executed to demonstrate the practicality and potential of this reaction.
Collapse
Affiliation(s)
- Yibo Yu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Jie Lin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Anni Qin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Jie Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Weiyi Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Guolin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Qian Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Mhaske K, Gangai S, Fernandes R, Kamble A, Chowdhury A, Narayan R. Aerobic Catalytic Cross-Dehydrogenative Coupling of Furans with Indoles Provides Access to Fluorophores with Large Stokes Shift. Chemistry 2024; 30:e202302929. [PMID: 38175849 DOI: 10.1002/chem.202302929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 01/06/2024]
Abstract
Sustainability in chemical processes is a crucial aspect in contemporary chemistry with sustainable catalysis as a vital parameter of the same. There has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions. Furan is a versatile heterocycle of natural origin used for multiple applications. However, it has scarcely been used in cross-dehydrogenative coupling. In this work, we have explored the cross-dehydrogentive coupling of furans with indoles using commonly available, inexpensive FeCl3 ⋅ 6H2 O (<0.25 $/g) as catalyst in the presence of so called 'ultimate oxidant' - oxygen, without the need for any external ligand or additive. The reactions were found to be scalable and to work even under partially aqueous conditions. This makes the reaction highly economical, practical, operationally simple and sustainable. The methodology provides direct access to π-conjugated short oligomers consisting of furan, thiophene and indole. These compounds were found to show interesting fluorescence properties with remarkably large Stokes shift (up to 205 nm). Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by nucleophilic trapping by furan.
Collapse
Affiliation(s)
- Krishna Mhaske
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Shon Gangai
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Rushil Fernandes
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Angulimal Kamble
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Arkaprava Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, Maharashtra, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| |
Collapse
|
11
|
Rafiee M, Abrams DJ, Cardinale L, Goss Z, Romero-Arenas A, Stahl SS. Cyclic voltammetry and chronoamperometry: mechanistic tools for organic electrosynthesis. Chem Soc Rev 2024; 53:566-585. [PMID: 38050749 PMCID: PMC10842901 DOI: 10.1039/d2cs00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Electrochemical methods offer unique advantages for chemical synthesis, as the reaction selectivity may be controlled by tuning the applied potential or current. Similarly, measuring the current or potential during the reaction can provide valuable mechanistic insights into these reactions. The aim of this tutorial review is to explain the use of cyclic voltammetry and chronoamperometry to interrogate reaction mechanisms, optimize electrochemical reactions, or design new reactions. Fundamental principles of cyclic voltammetry and chronoamperometry experiments are presented together with the application of these techniques to probe (electro)chemical reactions. Several diagnostic criteria are noted for the use of cyclic voltammetry and chronoamperometry to analyze coupled electrochemical-chemical (EC) reactions, and a series of individual mechanistic studies are presented. Steady state voltammetric and amperometric measurements, using microelectrodes (ME) or rotating disk electrodes (RDE) provide a means to analyze concentrations of redox active species in bulk solution and offer a versatile strategy to conduct kinetic analysis or determine the species present during (electro)synthetic chemical reactions.
Collapse
Affiliation(s)
- Mohammad Rafiee
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA.
| | - Dylan J Abrams
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Luana Cardinale
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Zachary Goss
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA.
| | - Antonio Romero-Arenas
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Departamento de Química Orgánica, Universidad de Sevilla, C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
12
|
Gangai S, Fernandes R, Mhaske K, Narayan R. Cu(ii)-catalyzed aerobic oxidative coupling of furans with indoles enables expeditious synthesis of indolyl-furans with blue fluorescence. RSC Adv 2024; 14:1239-1249. [PMID: 38174245 PMCID: PMC10762296 DOI: 10.1039/d3ra08226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
With the purpose of incorporating sustainability in chemical processes, there has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions and processes. In this work, we have explored the atom-economic oxidative coupling between two important electron-rich heterocycles - indoles and furans - using commonly available, inexpensive metal catalyst CuCl2·2H2O (<0.25$ per g) to develop an expeditious synthesis of indolyl-furans. Moreover, the reaction proceeded well in the presence of the so-called 'ultimate oxidant' - air, without the need for any external ligand or additive. The reaction was found to be scalable and to work even under partially aqueous conditions. This makes the methodology highly economical, practical, operationally simple and sustainable. In addition, the methodology provides direct access to novel indole-furan-thiophene (IFT)-based electron-rich π-conjugated systems, which show green-yellow fluorescence with large Stokes shift and high quantum yields. Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by the nucleophilic attack by furan.
Collapse
Affiliation(s)
- Shon Gangai
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rushil Fernandes
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Krishna Mhaske
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa GEC Campus, Farmagudi Goa-403401 India
| |
Collapse
|
13
|
Gazzola G, Antonello A, Isse AA, Fantin M. Simple Iron Halides Enable Electrochemically Mediated ATRP in Nonpolar Media. ACS Macro Lett 2023; 12:1602-1607. [PMID: 37955645 PMCID: PMC10734308 DOI: 10.1021/acsmacrolett.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
An electrochemically controlled atom transfer radical polymerization (eATRP) was successfully carried out with a minimal amount (ppm-level) of FeBr3 catalyst in a nonpolar solvent, specifically anisole. Traditionally, nonpolar media have been advantageous for Fe-based ATRP, but their low conductivity has hindered any electrochemical application. This study introduces the application of electrocatalytic methods in a highly nonpolar polymerization medium. Precise control over the polymerization was obtained by employing anhydrous anisole with only 400 ppm of FeBr3 and applying a negative overpotential of 0.3 V. Additionally, employing an undivided cell setup with two simple iron wire electrodes resulted in a significant 15-fold reduction in electrical resistance compared to traditional divided cell setups. This enabled the production of polymers with a dispersity of ≤1.2. Lastly, an examination of kinetic and thermodynamic aspects indicated that the ppm-level catalysis was facilitated by the high ATRP equilibrium constant of Fe catalysts in nonpolar environments.
Collapse
Affiliation(s)
| | | | - Abdirisak A. Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Fantin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
14
|
Punchihewa BT, Minda V, Gutheil WG, Rafiee M. Electrosynthesis and Microanalysis in Thin Layer: An Electrochemical Pipette for Rapid Electrolysis and Mechanistic Study of Electrochemical Reactions. Angew Chem Int Ed Engl 2023; 62:e202312048. [PMID: 37669353 DOI: 10.1002/anie.202312048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Electrochemistry represents unique approaches for the promotion and mechanistic study of chemical reactions and has garnered increasing attention in different areas of chemistry. This expansion necessitates the enhancement of the traditional electrochemical cells that are intrinsically constrained by mass transport limitations. Herein, we present an approach for designing an electrochemical cell by limiting the reaction chamber to a thin layer of solution, comparable to the thickness of the diffusion layer. This thin layer electrode (TLE) provides a modular platform to bypass the constraints of traditional electrolysis cells and perform electrolysis reactions in the timescale of electroanalytical techniques. The utility of the TLE for electrosynthetic applications benchmarked using NHPI-mediated electrochemical C-H functionalization. The application of microscale electrolysis for the study of drug metabolites was showcased by elucidating the oxidation pathways of the paracetamol drug. Moreover, hosting a microelectrode in the TLE, was shown to enable real-time probing of the profiles of redox-active components of these rapid electrosynthesis reactions.
Collapse
Affiliation(s)
- Buwanila T Punchihewa
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MI 64110, USA
| | - Vidit Minda
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MI 64108, USA
| | - William G Gutheil
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MI 64108, USA
| | - Mohammad Rafiee
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MI 64110, USA
| |
Collapse
|
15
|
Mohammadpour P, Safaei E, Mazarei E, Zeinalipour-Yazdi CD. TEMPO and a co-reductant mediated aerobic epoxidation of olefins using a new magnetically recoverable iron(III) bis(phenol)diamine complex: experimental and computational studies. Phys Chem Chem Phys 2023; 25:26588-26603. [PMID: 37753780 DOI: 10.1039/d3cp02254d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A magnetically recoverable catalyst of an iron(III) bis(phenol) diamine complex immobilized onto amine functionalized silica-coated magnetic nanoparticles has been synthesized. The catalyst was characterized using FESEM, TEM and XRD which confirmed the nano structure of the catalyst. The physicochemical techniques of ICP, FT-IR, XPS, EDS and TGA proved the loading of the ligand and metal complex on silica-coated magnetic nanoparticles. Using the prepared heterogeneous catalyst, aerobic epoxidation reactions of different alkenes have been investigated in the presence of SO32- as a reducing agent. Moreover, using TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to discover the mechanism of the aerobic epoxidation of olefins, a new TEMPO-assisted route has been explored. Both of the reaction pathways led to a moderate to high percentage yield of epoxides in water at room temperature. For further understanding mechanistic aspects, density functional theory (DFT) computational studies have been performed. The DFT calculations confirm the suggested mechanism for the title reaction and show the electron density in the vicinity of Fe(II) in the presence of TEMPO as a co-catalyst was more than that in the presence of SO32-.
Collapse
Affiliation(s)
- Pegah Mohammadpour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran.
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 7194684795, Iran.
| | - Elham Mazarei
- Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | |
Collapse
|
16
|
Tian H, Li R, Miao J, Liu S, Wang F, Zheng Z. Additive-free selective oxidation of aromatic alcohols with molecular oxygen catalyzed by a mixed-valence polyoxovanadate-based metal-organic framework. Dalton Trans 2023. [PMID: 37340820 DOI: 10.1039/d3dt01403g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Selective oxidation of alcohols to aldehydes is an industrially significant chemical transformation. Herein, we report a mixed-valence polyoxovanadate-based metal-organic framework (MOF), (H2bix)5{[Cd(bix)2][VIV8VV7O36Cl]2}·3H2O (V-Cd-MOF), for catalyzing the additive-free oxidation of a series of aromatic alcohols with high selectivity and in nearly quantitative yield to the corresponding aldehydes with O2 as the oxidant. Experimental results, corroborated with density functional theory calculations, indicate that it is the synergistic operation of the dual active sites of the VIV-O-VV building units in the polyoxovanadate cluster that is responsible for the excellent catalytic performance observed: on the one hand, the exposed and readily accessible reduced VIV site is believed to activate O2, resulting in a reactive oxygen species for the subsequent activation and breaking of the substrate's Cα-H bond. On the other hand, the VV site coordinates with the alcoholic O atom to facilitate the cleavage of the O-H bond. The catalyst can be recycled by centrifugation and re-used at least five times with uncompromised performance. To our knowledge, V-Cd-MOF represents the first example of a polyoxometalate-based MOF catalyst for additive-free selective oxidation of alcohol to aldehyde with O2 as an oxidant.
Collapse
Affiliation(s)
- Hongrui Tian
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Runhan Li
- School of Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jun Miao
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Shuxia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Ren Min Street No. 5268, Changchun, Jilin 130024, P. R. China
| | - Fengfeng Wang
- National Institutes for Food and Drug Control, 31 Huatuo Road, Daxing District, Beijing, 102600, China
| | - Zhiping Zheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
17
|
Hosoya M, Saito Y, Horiuchi Y. Honeycomb reactor: a promising device for streamlining aerobic oxidation under continuous-flow conditions. Beilstein J Org Chem 2023; 19:752-763. [PMID: 37284591 PMCID: PMC10241100 DOI: 10.3762/bjoc.19.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
We report on the high potential of a honeycomb reactor for the use in aerobic oxidation under continuous-flow conditions. The honeycomb reactor is made of porous material with narrow channels separated by porous walls allowing for high density accumulation in the reactor. This structure raised the mixing efficiency of a gas-liquid reaction system, and it effectively accelerated the aerobic oxidation of benzyl alcohols to benzaldehydes under continuous-flow conditions. This reactor is a promising device for streamlining aerobic oxidation with high process safety because it is a closed system.
Collapse
Affiliation(s)
- Masahiro Hosoya
- API R&D Laboratory, Research Division, Shionogi & Co., Ltd., 1-1, Futaba-cho 3-Chome, Toyonaka, Osaka 561-0825, Japan
| | - Yusuke Saito
- Carbon Neutral Promotion Division, ARK Creation Centre, Cataler Corporation, 1905-10 Shimonobe, Iwata, Shizuoka 438-0112, Japan
| | - Yousuke Horiuchi
- Carbon Neutral Promotion Division, ARK Creation Centre, Cataler Corporation, 1905-10 Shimonobe, Iwata, Shizuoka 438-0112, Japan
| |
Collapse
|
18
|
Rezvani M, Oskoui PR, Kianvash A. Preparation of Self‐Catalyzing Sols in the 40SiO
2
– 30FeO – 20FeO – 20CaO – 10Na
2
O Glass System by Sol‐Gel Method. ChemistrySelect 2023. [DOI: 10.1002/slct.202204343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- M. Rezvani
- Department of Materials Engineering University of Tabriz 51666-16471 Tabriz Iran
| | - P. Rastgoo Oskoui
- Department of Materials Engineering University of Tabriz 51666-16471 Tabriz Iran
| | - A. Kianvash
- Department of Materials Engineering University of Tabriz 51666-16471 Tabriz Iran
| |
Collapse
|
19
|
Toda M, Sasano Y, Takahashi M, Fujiki S, Kasabata K, Ono T, Sato K, Kashiwagi Y, Iwabuchi Y. Identification of the Optimal Framework for Nitroxyl Radical/Hydroxylamine in Copper-Cocatalyzed Aerobic Alcohol Oxidation. J Org Chem 2023; 88:1434-1444. [PMID: 36655914 DOI: 10.1021/acs.joc.2c02327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
8-Azabicyclo[3.2.1]octan-8-ol (ABOOL) and 7-azabicyclo[2.2.1]heptan-7-ol (ABHOL) are the main homologues of hydroxylamine 2-azaadamantan-2-ol (AZADOL) and 9-azabicyclo[3.3.1]nonan-9-ol. Both homologues feature a small bicyclic backbone and are known to be stable; however, to date, they have not been used as catalysts for alcohol oxidation. Herein, we report that these hydroxylamines can efficiently catalyze the oxidation of various secondary alcohols to their corresponding ketones using molecular oxygen in ambient air as the terminal oxidant and copper cocatalysts at room temperature. Furthermore, we show that ABOOL and ABHOL can be easily synthesized from commercially available materials.
Collapse
Affiliation(s)
- Masaki Toda
- Graduate School of Pharmaceutical Sciences, Tohoku University; 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yusuke Sasano
- Graduate School of Pharmaceutical Sciences, Tohoku University; 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masaya Takahashi
- Graduate School of Pharmaceutical Sciences, Tohoku University; 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Shogo Fujiki
- Graduate School of Pharmaceutical Sciences, Tohoku University; 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Koki Kasabata
- Graduate School of Pharmaceutical Sciences, Tohoku University; 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611; Japan
| | - Katsuhiko Sato
- Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima, Aoba, Sendai 981-8558, Japan
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611; Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University; 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
20
|
Sharma S, Shaheeda S, Shaw K, Bisai A, Paul A. Two-Electron- and One-Electron-Transfer Pathways for TEMPO-Catalyzed Greener Electrochemical Dimerization of 3-Substituted-2-Oxindoles. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sulekha Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Saina Shaheeda
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal 741 246, India
| | - Amit Paul
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|
21
|
Rana G, Kar A, Kundal S, Musib D, Jana U. DDQ/Fe(NO 3) 3-Catalyzed Aerobic Synthesis of 3-Acyl Indoles and an In Silico Study for the Binding Affinity of N-Tosyl-3-acyl Indoles toward RdRp against SARS-CoV-2. J Org Chem 2023; 88:838-851. [PMID: 36622749 DOI: 10.1021/acs.joc.2c02009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the present study, we herein report a DDQ-catalyzed new protocol for the synthesis of substituted 3-acylindoles. Being a potential system for virtual hydrogen storage, introduction of catalytic DDQ in combination with Fe(NO3)3·9H2O and molecular oxygen as co-catalysts offers a regioselective oxo-functionalization of C-3 alkyl-/aryllidine indolines even with scale-up investigations. Intermediate isolation, their spectroscopic characterization, and the density functional theory calculations indicate that the method involves dehydrogenative allylic hydroxylation and 1,3-functional group isomerization/aromatization followed by terminal oxidation to afford 3-acylindoles quantitatively with very high regioselectivity. This method is very general for a large number of substrates with varieties of functional groups tolerance emerging high-yield outcome. Moreover, molecular docking studies were performed for some selected ligands with an RNA-dependent RNA polymerase complex (RdRp complex) of SARS-CoV-2 to illustrate the binding potential of those ligands. The docking results revealed that few of the ligands possess the potential to inhibit the RdRp of SARS-Cov-2 with binding energies (-6.7 to -8.19 kcal/mol), which are comparably higher with respect to the reported binding energies of the conventional re-purposed drugs such as Remdesivir, Ribavirin, and so forth (-4 to -7 kcal/mol).
Collapse
Affiliation(s)
- Gopal Rana
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Abhishek Kar
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Sandip Kundal
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India
| | - Umasish Jana
- Department of Chemistry, Jadavpur University, Kolkata 700 032, West Bengal, India
| |
Collapse
|
22
|
Brown SE, Mantaloufa I, Andrews RT, Barnes TJ, Lees MR, De Proft F, Cunha AV, Pike SD. Photoactivation of titanium-oxo cluster [Ti 6O 6(OR) 6(O 2C t Bu) 6]: mechanism, photoactivated structures, and onward reactivity with O 2 to a peroxide complex. Chem Sci 2023; 14:675-683. [PMID: 36741534 PMCID: PMC9847671 DOI: 10.1039/d2sc05671b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The molecular titanium-oxo cluster [Ti6O6(OiPr)6(O2C t Bu)6] (1) can be photoactivated by UV light, resulting in a deeply coloured mixed valent (photoreduced) Ti (iii/iv) cluster, alongside alcohol and ketone (photooxidised) organic products. Mechanistic studies indicate that a two-electron (not free-radical) mechanism occurs in this process, which utilises the cluster structure to facilitate multielectron reactions. The photoreduced products [Ti6O6(OiPr)4(O2C t Bu)6(sol)2], sol = iPrOH (2) or pyridine (3), can be isolated in good yield and are structurally characterized, each with two, uniquely arranged, antiferromagnetically coupled d-electrons. 2 and 3 undergo onward oxidation under air, with 3 cleanly transforming into peroxide complex, [Ti6O6(OiPr)4(O2C t Bu)6(py)(O2)] (5). 5 reacts with isopropanol to regenerate the initial cluster (1) completing a closed cycle, and suggesting opportunities for the deployment of these easily made and tuneable clusters for sustainable photocatalytic processes using air and light. The redox reactivity described here is only possible in a cluster with multiple Ti sites, which can perform multi-electron processes and can adjust its shape to accommodate changes in electron density.
Collapse
Affiliation(s)
| | | | | | | | | | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Ana V. Cunha
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB)BrusselsBelgium,University of AntwerpAntwerpBelgium
| | | |
Collapse
|
23
|
Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Redox-active molecules as organocatalysts for selective oxidative transformations - an unperceived organocatalysis field. Beilstein J Org Chem 2022; 18:1672-1695. [PMID: 36570566 PMCID: PMC9749543 DOI: 10.3762/bjoc.18.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Organocatalysis is widely recognized as a key synthetic methodology in organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C-C bond-forming processes, such as aldol reactions, Michael reactions, cycloaddition reactions, etc. Organophotoredox catalysis has emerged recently as another important catalysis type which has gained much attention and has been quite well-reviewed. At the same time, there are a significant number of other processes, especially oxidative, catalyzed by redox-active organic molecules in the ground state (without light excitation). Unfortunately, many of such processes are not associated in the literature with the organocatalysis field and thus many achievements are not fully consolidated and systematized. The present article is aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone/peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here.
Collapse
Affiliation(s)
- Elena R Lopat’eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Lapshin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
24
|
Application of a TEMPO-Polypyrrole Polymer for NOx-Mediated Oxygen Electroreduction. Catalysts 2022. [DOI: 10.3390/catal12111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The oxygen reduction reaction (ORR) is one of the key processes for electrochemical energy storage, such as the cathode process in fuel cells and metal–air batteries. To date, the efficiency of the ORR half-reaction limits the overall performance of these energy storage devices. Traditional platinum-based materials are expensive and cannot provide the desired ORR efficiency. As an alternative, a new catalytic scheme for an ORR was proposed, which consisted of an electrode modified with a TEMPO-containing conductive polymer and a solution redox mediator system based on nitrogen oxides (NOx). NOx is perfect for oxygen reduction in solution, which, however, cannot be efficiently reduced onto a pristine electrode, while TEMPO is inactive in the ORR itself but catalyzes the electrochemical reduction of NO2 on the electrode surface. Together, these catalysts have a synergistic effect, enabling an efficient ORR in an acidic medium. In the present study, the synthesis of a novel TEMPO-containing conductive polymer and its application in the synergistic ORR system with a NOx mediator is described. The proposed mediator system may increase the performance of proton-exchange fuel cells and metal–air batteries.
Collapse
|
25
|
Zhang Z, Gu J, Ji L, Liu X, Zhang T, Lv Y, Liu F, Jia Z, Loh TP. Triaryl Carbonium Ion-Pair-Mediated Cooperative Aerobic Dehydrogenation of N-Heterocycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhenguo Zhang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jun Gu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Liang Ji
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Xiaoxiao Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Ting Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Yongheng Lv
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, People’s Republic of China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
26
|
Ishihara R, Okamura K, Yoshimura Y, Ueno S. Diamine‐Promoted Deacylation of 2‐Alkyl‐1,3‐Diketones for the Facile Synthesis of Ketones. ChemistrySelect 2022. [DOI: 10.1002/slct.202202717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rei Ishihara
- Department of Applied Chemistry Graduate School of Engineering Tokyo University of Technology 1404-1 Katakura, Hachioji Tokyo 192–0982 Japan
| | - Kota Okamura
- Department of Applied Chemistry Graduate School of Engineering Tokyo University of Technology 1404-1 Katakura, Hachioji Tokyo 192–0982 Japan
| | - Yuki Yoshimura
- Department of Applied Chemistry Graduate School of Engineering Tokyo University of Technology 1404-1 Katakura, Hachioji Tokyo 192–0982 Japan
| | - Satoshi Ueno
- Department of Applied Chemistry Graduate School of Engineering Tokyo University of Technology 1404-1 Katakura, Hachioji Tokyo 192–0982 Japan
| |
Collapse
|
27
|
Gao T, Meng L, Zeng G, Hao Z, Han Z, Feng Q, Lin J. Copper(II) complexes supported by 8-hydroxyquinoline-imine ligands: Synthesis, characterization and catalysis in aerobic alcohols oxidation. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Chandra P. A Review on the Consequence of 3D-Orienation of Cu/TEMPO/Imidazole Sequence on Selective Alcohol Oxidation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Deng J, Ben Tayeb K, Dong C, Simon P, Marinova M, Dubois M, Morin JC, Zhou W, Capron M, Ordomsky VV. TEMPO-Ru-BEA Composite Material for the Selective Oxidation of Alcohols to Aldehydes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jianying Deng
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Karima Ben Tayeb
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, UMR CNRS 8516, Université de Lille, Lille F-59000, France
| | - Chunyang Dong
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Pardis Simon
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Maya Marinova
- Institut Michel-Eugène Chevreul, Villeneuve-d’Ascq 59655, France
| | - Melanie Dubois
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Jean-Charles Morin
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Wenjuan Zhou
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS/Solvay, Shanghai 201108, People’s Republic of China
| | - Mickael Capron
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Vitaly V. Ordomsky
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| |
Collapse
|
30
|
Shee M, Singh NDP. Photogenerated Azido Radical Mediated Oxidation: Access to Carbonyl Functionality from Alcohols, Alkylarenes, and Olefins via Organophotoredox. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maniklal Shee
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 Kharagpur West Bengal India
| | - N. D. Pradeep Singh
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 Kharagpur West Bengal India
| |
Collapse
|
31
|
Al-Hunaiti A, Abu-Radaha B, Wraith D, Repo T. Catalytic behaviour of the Cu(i)/L/TEMPO system for aerobic oxidation of alcohols - a kinetic and predictive model. RSC Adv 2022; 12:7864-7871. [PMID: 35424759 PMCID: PMC8982218 DOI: 10.1039/d1ra09359b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/25/2022] [Indexed: 11/28/2022] Open
Abstract
Here, we disclose a new copper(i)-Schiff base complex series for selective oxidation of primary alcohols to aldehydes under benign conditions. The catalytic protocol involves 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), N-methylimidazole (NMI), ambient air, acetonitrile, and room temperature. This system provides a straightforward and rapid pathway to a series of Schiff bases, particularly, the copper(i) complexes bearing the substituted (furan-2-yl)imine bases N-(4-fluorophenyl)-1-(furan-2-yl)methanimine (L2) and N-(2-fluoro-4-nitrophenyl)-1-(furan-2-yl)methanimine (L4) have shown excellent yields. Both benzylic and aliphatic alcohols were converted to aldehydes selectively with 99% yield (in 1-2 h) and 96% yield (in 16 h). The mechanistic studies via kinetic analysis of all components demonstrate that the ligand type plays a key role in reaction rate. The basicity of the ligand increases the electron density of the metal center, which leads to higher oxidation reactivity. The Hammett plot shows that the key step does not involve H-abstraction. Additionally, a generalized additive model (GAM, including random effect) showed that it was possible to correlate reaction composition with catalytic activity, ligand structure, and substrate behavior. This can be developed in the form of a predictive model bearing in mind numerous reactions to be performed or in order to produce a massive data-set of this type of oxidation reaction. The predictive model will act as a useful tool towards understanding the key steps in catalytic oxidation through dimensional optimization while reducing the screening of statistically poor active catalysis.
Collapse
Affiliation(s)
- Afnan Al-Hunaiti
- Department of Chemistry, School of Science, The University of Jordan Amman 11942 Jordan
| | - Batool Abu-Radaha
- Department of Chemistry, School of Science, The University of Jordan Amman 11942 Jordan
| | - Darren Wraith
- School of Public Health and Social Work, Queensland University of Technology Queensland 4000 Australia
| | - Timo Repo
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki 00014 Helsinki Finland
| |
Collapse
|
32
|
Sasaki Y, Yokoo K, Mori K. Catalytic Magnesium-Oppenauer Oxidation of Alcohols. CHEM LETT 2022. [DOI: 10.1246/cl.220022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuta Sasaki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| | - Kazuma Yokoo
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| |
Collapse
|
33
|
Hermens JGH, Jensma A, Feringa BL. Highly Efficient Biobased Synthesis of Acrylic Acid. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Johannes G. H. Hermens
- Stratingh Institute for Chemistry Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC) University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Andries Jensma
- Stratingh Institute for Chemistry Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC) University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC) University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
34
|
Hermens JGH, Jensma A, Feringa BL. Highly Efficient Biobased Synthesis of Acrylic Acid. Angew Chem Int Ed Engl 2022; 61:e202112618. [PMID: 34783426 PMCID: PMC9299676 DOI: 10.1002/anie.202112618] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Indexed: 12/02/2022]
Abstract
Petrochemical based polymers, paints and coatings are cornerstones of modern industry but our future sustainable society demands greener processes and renewable feedstock materials. A challenge is to access platform monomers from biomass resources while integrating the principles of green chemistry in their chemical synthesis. We present a synthesis route starting from biomass-derived furfural towards the commonly used monomers maleic anhydride and acrylic acid, implementing environmentally benign photooxygenation, aerobic oxidation and ethenolysis reactions. Maleic anhydride and acrylic acid, transformed into sodium acrylate, were isolated in yields of 85 % (2 steps) and 81 % (4 steps), respectively. With minimal waste and high atom efficiency, this biobased route provides a viable alternative to access key monomers.
Collapse
Affiliation(s)
- Johannes G. H. Hermens
- Stratingh Institute for ChemistryAdvanced Research Center Chemical Building Blocks Consortium (ARC CBBC)University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Andries Jensma
- Stratingh Institute for ChemistryAdvanced Research Center Chemical Building Blocks Consortium (ARC CBBC)University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryAdvanced Research Center Chemical Building Blocks Consortium (ARC CBBC)University of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
35
|
Li SJ, Fang W, Richardson JO, Fang DC. Tunnelling assisted hydrogen elimination mechanisms of FeCl 3/TEMPO. Chem Commun (Camb) 2021; 58:565-568. [PMID: 34909806 DOI: 10.1039/d1cc06035j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metal-TEMPO hybrids are a family of novel and promising catalysts for aerobic oxidation of alcohols, yet the underlying mechanisms have not been understood theoretically. Using density functional theory, we probe the hydrogen abstraction mechanisms of FeCl3/TEMPO on two characteristic substrates, 9,10-dihydroanthracene and benzyl alcohol. We found that the low spin state of FeCl3/TEMPO is more favourable, and that the N atom is the preferred hydrogen acceptor. Moreover, dispersion interactions assist the reaction, as well as nuclear tunnelling, which even at room temperature can speed up the process by almost two orders of magnitude. We also predict that pronounced kinetic isotope effects (KIE) could be observed due to tunnelling. Our findings provide insights into improving the substrate scope and the development of new transformations for the FeCl3/TEMPO system.
Collapse
Affiliation(s)
- Shi-Jun Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China. .,Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Wei Fang
- Laboratory for Physical Chemistry, ETH Zurich, Zurich 8093, Switzerland. .,State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | | | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|