1
|
Yin D, Xiong R, Yang Z, Feng J, Liu W, Li S, Li M, Ruan H, Li J, Li L, Lai L, Guo X. Mapping Full Conformational Transition Dynamics of Intrinsically Disordered Proteins Using a Single-Molecule Nanocircuit. ACS NANO 2024. [PMID: 39276130 DOI: 10.1021/acsnano.4c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Intrinsically disordered proteins (IDPs) are emerging therapeutic targets for human diseases. However, probing their transient conformations remains challenging because of conformational heterogeneity. To address this problem, we developed a biosensor using a point-functionalized silicon nanowire (SiNW) that allows for real-time sampling of single-molecule dynamics. A single IDP, N-terminal transactivation domain of tumor suppressor protein p53 (p53TAD1), was covalently conjugated to the SiNW through chemical engineering, and its conformational transition dynamics was characterized as current fluctuations. Furthermore, when a globular protein ligand in solution bound to the targeted p53TAD1, protein-protein interactions could be unambiguously distinguished from large-amplitude current signals. These proof-of-concept experiments enable semiquantitative, realistic characterization of the structural properties of IDPs and constitute the basis for developing a valuable tool for protein profiling and drug discovery in the future.
Collapse
Affiliation(s)
- Dongbao Yin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Ruoyao Xiong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Zhiheng Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Jianfei Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Wenzhe Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Shiyun Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Mingyao Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Hao Ruan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P. R. China
| | - Luhua Lai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, P. R. China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
- National Biomedical Imaging Center, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
2
|
Ren X, Xie Z, Li X, Wu D, Wang H, Li Y, Wang X, Zhao J, Wei Q. A sensitive immunosensor via Pd@Au 0.85Pd 0.15 in situ electrocatalysis generating H 2O 2 for quenching electrochemiluminescence of Ir(pbi) 2(acac)@Ti 3C 2T x MXene-PVA. Talanta 2024; 275:126125. [PMID: 38663066 DOI: 10.1016/j.talanta.2024.126125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
The establishment of rapid target analysis methods for cytokeratin fragment antigen 21-1 (CYFRA 21-1) is urgently needed. [Ir(pbi)2(acac)] (pbi = 2-(4-bromophenyl)-1-hydrogen -benzimidazole, acac = acetylacetonate) as traditional electrochemiluminescence (ECL) luminophores has been confined due to its non-negligible dark toxicity and poor water solubility leading to poor biocompatibility and electrical conductivity as an organic molecule. Hence, to overcome this limitation, [Ir(pbi)2(acac)] can be effectively loaded on the polyvinyl alcohol hydrogel modified Ti3C2Tx MXene surface (Ir@Ti3C2Tx-PVA) as sensing platform which can emit high ECL signals. Then, a quenching strategy was proposed to fabricate an ECL sandwich immunosensor using H2O2 as quencher molecules which can generated by Pd@Au0.85Pd0.15. Especially, the generation of O2 to H2O2 can be achieved through a two-electron (2e-) reaction pathway by Pd@Au0.85Pd0.15, to overcome the restriction that the H2O2 was virtually impossible to label or immobilize on the non-enzyme nanomaterials. The proposed ECL assay achieves a response to CYFRA 21-1 within the range of 0.1 pg/mL-100 ng/mL, with a detection limit of 8.9 fg/mL (S/N = 3). This work provided a feasible tactic to seek superior-performance ECL luminophore and quencher consequently set up a novel means to makeup ultrasensitive ECL biosensor, which extended the utilization potential of Ir(pbi)2(acac) in ECL assays.
Collapse
Affiliation(s)
- Xiang Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Zuoxun Xie
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiaojian Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252000, PR China.
| | - Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Huan Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yuyang Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xueying Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jinxiu Zhao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Guo J, Chen PK, Chang S. Molecular-Scale Electronics: From Individual Molecule Detection to the Application of Recognition Sensing. Anal Chem 2024; 96:9303-9316. [PMID: 38809941 DOI: 10.1021/acs.analchem.3c04656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
|
4
|
Li K, An N, Wu L, Wang M, Li F, Li L. Absolute quantification of microRNAs based on mass transport limitation under a laminar flow SPR system. Biosens Bioelectron 2024; 244:115776. [PMID: 37951205 DOI: 10.1016/j.bios.2023.115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023]
Abstract
As an important biomarker for diagnostics and therapeutics of various diseases, the low-cost, quantitative detection method of microRNAs (miRNAs) has recently caught broad attention. However, their small size and low abundance still derive challenges to quantification detection. In this study, we developed an ultrasensitive and multiplexed surface plasmon resonance (SPR) biosensor for quantifying miRNAs without standard. We introduced the mass transport limitation (MTL) strategy for the absolute quantification of miRNAs. We first explore the mechanism of DNA capture and the condition for triggering MTL on the SPR biosensor. We demonstrated that probes of 22-25 nt in length with fewer influences of the secondary structure provide better triggering of MTL. For proof of concept studies, let-7a, miR-155 and miR-21 were selected as candidate targets. Based on the structure and kinetics analysis, we demonstrate the best capture probe efficiency, and this biosensor's limit of detection (LOD) is 500 fM without any signal amplification. Furthermore, our biosensor achieves multiplex detection, which could detect three targets simultaneously. The quantitative results of miRNA indicated the great prospects of our biosensor in nucleic acid-related early diagnosis and biosensing.
Collapse
Affiliation(s)
- Kai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Na An
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liqing Wu
- National Institute of Metrology, Beijing, 100029, China.
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fukai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liang Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Jiang T, Zeng BF, Zhang B, Tang L. Single-molecular protein-based bioelectronics via electronic transport: fundamentals, devices and applications. Chem Soc Rev 2023; 52:5968-6002. [PMID: 37498342 DOI: 10.1039/d2cs00519k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biomolecular electronics is a rapidly growing multidisciplinary field that combines biology, nanoscience, and engineering to bridge the two important fields of life sciences and molecular electronics. Proteins are remarkable for their ability to recognize molecules and transport electrons, making the integration of proteins into electronic devices a long sought-after goal and leading to the emergence of the field of protein-based bioelectronics, also known as proteotronics. This field seeks to design and create new biomolecular electronic platforms that allow for the understanding and manipulation of protein-mediated electronic charge transport and related functional applications. In recent decades, there have been numerous reports on protein-based bioelectronics using a variety of nano-gapped electrical devices and techniques at the single molecular level, which are not achievable with conventional ensemble approaches. This review focuses on recent advances in physical electron transport mechanisms, device fabrication methodologies, and various applications in protein-based bioelectronics. We discuss the most recent progress of the single or few protein-bridged electrical junction fabrication strategies, summarise the work on fundamental and functional applications of protein bioelectronics that enable high and dynamic electron transport, and highlight future perspectives and challenges that still need to be addressed. We believe that this specific review will stimulate the interdisciplinary research of topics related to protein-related bioelectronics, and open up new possibilities for single-molecule biophysics and biomedicine.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Biao-Feng Zeng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Jiang T, Yi L, Liu X, Ivanov AP, Edel JB, Tang L. Fabrication of electron tunneling probes for measuring single-protein conductance. Nat Protoc 2023; 18:2579-2599. [PMID: 37420088 DOI: 10.1038/s41596-023-00846-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/21/2023] [Indexed: 07/09/2023]
Abstract
Studying the electrical properties of individual proteins is a prominent research area in the field of bioelectronics. Electron tunnelling or quantum mechanical tunnelling (QMT) probes can act as powerful tools for investigating the electrical properties of proteins. However, current fabrication methods for these probes often have limited reproducibility, unreliable contact or inadequate binding of proteins onto the electrodes, so better solutions are required. Here, we detail a generalizable and straightforward set of instructions for fabricating simple, nanopipette-based, tunnelling probes, suitable for measuring conductance in single proteins. Our QMT probe is based on a high-aspect-ratio dual-channel nanopipette that integrates a pair of gold tunneling electrodes with a gap of less than 5 nm, fabricated via the pyrolytic deposition of carbon followed by the electrochemical deposition of gold. The gold tunneling electrodes can be functionalized using an extensive library of available surface modifications to achieve single-protein-electrode contact. We use a biotinylated thiol modification, in which a biotin-streptavidin-biotin bridge is used to form the single-protein junction. The resulting protein-coupled QMT probes enable the stable electrical measurement of the same single protein in solution for up to several hours. We also describe the analysis method used to interpret time-dependent single-protein conductance measurements, which can provide essential information for understanding electron transport and exploring protein dynamics. The total time required to complete the protocol is ~33 h and it can be carried out by users trained in less than 24 h.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Long Yi
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Xu Liu
- State Key Laboratory of Modern Optical Instrumentation, Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Aleksandar P Ivanov
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Joshua B Edel
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Bera S, Govinda S, Fereiro JA, Pecht I, Sheves M, Cahen D. Biotin Binding Hardly Affects Electron Transport Efficiency across Streptavidin Solid-State Junctions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1394-1403. [PMID: 36648410 PMCID: PMC9893813 DOI: 10.1021/acs.langmuir.2c02378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/29/2022] [Indexed: 05/27/2023]
Abstract
The electron transport (ETp) efficiency of solid-state protein-mediated junctions is highly influenced by the presence of electron-rich organic cofactors or transition metal ions. Hence, we chose to investigate an interesting cofactor-free non-redox protein, streptavidin (STV), which has unmatched strong binding affinity for an organic small-molecule ligand, biotin, which lacks any electron-rich features. We describe for the first time meso-scale ETp via electrical junctions of STV monolayers and focus on the question of whether the rate of ETp across both native and thiolated STV monolayers is influenced by ligand binding, a process that we show to cause some structural conformation changes in the STV monolayers. Au nanowire-electrode-protein monolayer-microelectrode junctions, fabricated by modifying an earlier procedure to improve the yields of usable junctions, were employed for ETp measurements. Our results on compactly integrated, dense, uniform, ∼3 nm thick STV monolayers indicate that, notwithstanding the slight structural changes in the STV monolayers upon biotin binding, there is no statistically significant conductance change between the free STV and that bound to biotin. The ETp temperature (T) dependence over the 80-300 K range is very small but with an unusual, slightly negative (metallic-like) dependence toward room temperature. Such dependence can be accounted for by the reversible structural shrinkage of the STV at temperatures below 160 K.
Collapse
Affiliation(s)
- Sudipta Bera
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sharada Govinda
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jerry A. Fereiro
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- The
School of Chemistry, Indian Institute of
Science Education and Research, Thiruvananthapuram, Maruthamala, Kerala 695551, India
| | - Israel Pecht
- Department
of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordechai Sheves
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Cahen
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
8
|
Electrical/Spectroscopic Stability of Conducting and Biodegradable Graft‐Copolymer. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Tang L, Yi L, Jiang T, Ren R, Paulose Nadappuram B, Zhang B, Wu J, Liu X, Lindsay S, Edel JB, Ivanov AP. Measuring conductance switching in single proteins using quantum tunneling. SCIENCE ADVANCES 2022; 8:eabm8149. [PMID: 35584212 PMCID: PMC9116604 DOI: 10.1126/sciadv.abm8149] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Interpreting the electrical signatures of single proteins in electronic junctions has facilitated a better understanding of the intrinsic properties of proteins that are fundamental to chemical and biological processes. Often, this information is not accessible using ensemble and even single-molecule approaches. In addition, the fabrication of nanoscale single-protein junctions remains challenging as they often require sophisticated methods. We report on the fabrication of tunneling probes, direct measurement, and active control (switching) of single-protein conductance with an external field in solution. The probes allowed us to bridge a single streptavidin molecule to two independently addressable, biotin-terminated electrodes and measure single-protein tunneling response over long periods. We show that charge transport through the protein has multiple conductive pathways that depend on the magnitude of the applied bias. These findings open the door for the reliable fabrication of protein-based junctions and can enable their use in future protein-embedded bioelectronics applications.
Collapse
Affiliation(s)
- Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou 310000, China
- Corresponding author. (L.T.); (A.P.I.); (J.B.E.)
| | - Long Yi
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, UK
| | - Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Ren Ren
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, UK
| | - Binoy Paulose Nadappuram
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, UK
- Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, UK
| | - Bintian Zhang
- Biodesign Institute; School of Life Sciences; Department of Physics; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jian Wu
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou 310000, China
| | - Xu Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China
| | - Stuart Lindsay
- Biodesign Institute; School of Life Sciences; Department of Physics; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joshua B. Edel
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, UK
- Corresponding author. (L.T.); (A.P.I.); (J.B.E.)
| | - Aleksandar P. Ivanov
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, UK
- Corresponding author. (L.T.); (A.P.I.); (J.B.E.)
| |
Collapse
|
10
|
Zhang B, Ryan E, Wang X, Song W, Lindsay S. Electronic Transport in Molecular Wires of Precisely Controlled Length Built from Modular Proteins. ACS NANO 2022; 16:1671-1680. [PMID: 35029115 PMCID: PMC9279515 DOI: 10.1021/acsnano.1c10830] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA molecular wires have been studied extensively because of the ease with which molecules of controlled length and composition can be synthesized. The same has not been true for proteins. Here, we have synthesized and studied a series of consensus tetratricopeptide repeat (CTPR) proteins, spanning 4 to 20 nm in length, in increments of 4 nm. For lengths in excess of 6 nm, their conductance exceeds that of the canonical molecular wire, oligo(phenylene-ethylenene), because of the more gradual decay of conductance with length in the protein. We show that, while the conductance decay fits an exponential (characteristic of quantum tunneling) and not a linear increase of resistance with length (characteristic of hopping transport), it is also accounted for by a square-law dependence on length (characteristic of weakly driven hopping). Measurements of the energy dependence of the decay length rule out the quantum tunneling case. A resonance in the carrier injection energy shows that allowed states in the protein align with the Fermi energy of the electrodes. Both the energy of these states and the long-range of hopping suggest that the reorganization induced by hole formation is greatly reduced inside the protein. We outline a model for calculating the molecular-electronic properties of proteins.
Collapse
Affiliation(s)
- Bintian Zhang
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Eathen Ryan
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| | - Weisi Song
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Stuart Lindsay
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Department of Physics, Arizona State University, Tempe, AZ 85281
- Corresponding Author: Stuart Lindsay: Phone 480 205 6432
| |
Collapse
|