1
|
Maeda M, De Feyter S, Tahara K. Chiral Solvent-Induced Homochiral Hierarchical Molecular Assemblies at the Liquid/Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15071-15079. [PMID: 38982679 DOI: 10.1021/acs.langmuir.4c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We herein investigate the formation of homochiral hierarchical self-assembled molecular networks (SAMNs) via chirality induction by the coadsorption of a chiral solvent at the liquid/graphite interface by means of scanning tunneling microscopy (STM). In a mixture of achiral solvents, 1-hexanoic acid, and 1,2,4-trichlorobenzene, an achiral dehydrobenzo[12]annulene (DBA) derivative with three alkoxy and three hydroxy groups in an alternating manner forms chiral hierarchical triangular cluster structures through dynamic self-sorting. Enantiomorphous domains appear in equal probability. On the other hand, in chiral 2-methyl-1-hexanoic acid as a solvent, this molecule produces (i) homochiral small triangular clusters at a low solute concentration, (ii) a chirality-biased hierarchical structure consisting of triangular cluster structures with different cluster sizes at a medium concentration, and (iii) a dense structure with no chirality bias at a high concentration. We attribute the concentration-dependent degree of the chirality transmission to the number of coadsorbed solvent molecules in the SAMNs and to the difference in nucleus structure and size in the initial stage of the SAMN formation.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, Leuven 3001, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
2
|
Li J, Wang X, He Y, Xu Z, Li X, Pan H, Wang Y, Dong Y, Shen Q, Zhang Y, Hou S, Wu K, Wang Y. Tuning Surface Organic Structures by Small Gas Molecules through Catassembly and Coassembly. J Phys Chem Lett 2024; 15:5564-5579. [PMID: 38753966 DOI: 10.1021/acs.jpclett.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The field of molecular assembly has seen remarkable advancements across various domains, such as materials science, nanotechnology, and biomedicine. Small gas molecules serve as pivotal modulators, capable of altering the architecture of assemblies via tuning a spectrum of intermolecular forces including hydrogen bonding, dipole-dipole interactions, and metal coordination. Surface techniques, notably scanning tunneling microscopy and atomic force microscopy, have proven instrumental in dissecting the structural metamorphosis and characteristic features of these assemblies at an unparalleled single-molecule resolution. Recent research has spotlighted two innovative approaches for modulating surface molecular assemblies with the aid of small gas molecules: "catassembly" and "coassembly". This Perspective delves into these methodologies through the lens of varying molecular interaction types. The strategies discussed here for regulating molecular assembly structures using small gas molecules can aid in understanding various complex assembly processes and structures and provide guidance for the further fabrication of complex surface structures.
Collapse
Affiliation(s)
- Jie Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Xueyan Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yang He
- School of Material and New Energy, South China Normal University, Shanwei 516600, China
| | - Zhen Xu
- Spin-X Institute, School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Xin Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Haoyang Pan
- Spin-X Institute, School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Yudi Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yangyu Dong
- Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Yajie Zhang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Shimin Hou
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
- Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Peng X, Zhang Y, Liu X, Qian Y, Ouyang Z, Kong H. From Short- to Long-Range Chiral Recognition on Surfaces: Chiral Assembly and Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307171. [PMID: 38054810 DOI: 10.1002/smll.202307171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Research on chiral behaviors of small organic molecules at solid surfaces, including chiral assembly and synthesis, can not only help unravel the origin of the chiral phenomenon in biological/chemical systems but also provide promising strategies to build up unprecedented chiral surfaces or nanoarchitectures with advanced applications in novel nanomaterials/nanodevices. Understanding how molecular chirality is recognized is considered to be a mandatory basis for such studies. In this review, a series of recent studies in chiral assembly and synthesis at well-defined metal surfaces under ultra-high vacuum conditions are outlined. More importantly, the intrinsic mechanisms of chiral recognition are highlighted, including short/long-range chiral recognition in chiral assembly and two main strategies to steer the reaction pathways and modulate selective synthesis of specific chiral products on surfaces.
Collapse
Affiliation(s)
- Xinchen Peng
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yinhui Zhang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xinbang Liu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yinyue Qian
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zuoling Ouyang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Huihui Kong
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
4
|
Zhao X, Miao X. Surface-supported metal-organic frameworks with geometric topological diversity via scanning tunneling microscopy. iScience 2024; 27:109392. [PMID: 38500826 PMCID: PMC10946334 DOI: 10.1016/j.isci.2024.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Surface-supported metal-organic frameworks (SMOFs) are long-range ordered periodic 2D lattice layers formed by inorganic metal nodes and organic ligands via coordination bonds on substrate surfaces. The atomic resolution STM lays a solid foundation for the conception and construction of SMOFs with large area, stable structure, and special function. In this review, the cutting-edge research of SMOFs from design strategy, preparation process, and how to accurately achieve structural and functional diversity are reviewed. Furthermore, we focus on the design and construction of novel and fascinating periodic and fractal structures, in which some typical honeycomb structures, Kagome lattice, hexagonal geometry, and Sierpiński triangles are summarized, and the related prospects for designing functional nanoscale systems and architectures are prospected. Finally, the challenges faced in the design and synthesis of SMOFs are denoted, and the application prospect and development trend of SMOFs are forecasted based on the current research status.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Xinrui Miao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
5
|
Sendker FL, Lo YK, Heimerl T, Bohn S, Persson LJ, Mais CN, Sadowska W, Paczia N, Nußbaum E, Del Carmen Sánchez Olmos M, Forchhammer K, Schindler D, Erb TJ, Benesch JLP, Marklund EG, Bange G, Schuller JM, Hochberg GKA. Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature 2024; 628:894-900. [PMID: 38600380 PMCID: PMC11041685 DOI: 10.1038/s41586-024-07287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Fractals are patterns that are self-similar across multiple length-scales1. Macroscopic fractals are common in nature2-4; however, so far, molecular assembly into fractals is restricted to synthetic systems5-12. Here we report the discovery of a natural protein, citrate synthase from the cyanobacterium Synechococcus elongatus, which self-assembles into Sierpiński triangles. Using cryo-electron microscopy, we reveal how the fractal assembles from a hexameric building block. Although different stimuli modulate the formation of fractal complexes and these complexes can regulate the enzymatic activity of citrate synthase in vitro, the fractal may not serve a physiological function in vivo. We use ancestral sequence reconstruction to retrace how the citrate synthase fractal evolved from non-fractal precursors, and the results suggest it may have emerged as a harmless evolutionary accident. Our findings expand the space of possible protein complexes and demonstrate that intricate and regulatable assemblies can evolve in a single substitution.
Collapse
Affiliation(s)
- Franziska L Sendker
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Yat Kei Lo
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Stefan Bohn
- Cryo-EM Platform and Institute of Structural Biology, Helmholtz Munich, Neuherberg, Germany
| | - Louise J Persson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | | | - Wiktoria Sadowska
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Nicole Paczia
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Eva Nußbaum
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Tübingen, Germany
| | | | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Tübingen, Germany
| | - Daniel Schindler
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- MaxGENESYS Biofoundry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Justin L P Benesch
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Max Planck Fellow Group Molecular Physiology of Microbes, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan M Schuller
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany.
| | - Georg K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Maeda M, Sato K, De Feyter S, Tahara K. Homochiral hierarchical molecular assemblies through dynamic combination of conformational states of a single chiral building block at the liquid/solid interface. NANOSCALE 2023. [PMID: 37997169 DOI: 10.1039/d3nr04042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We herein report the construction of homochiral, hierarchical self-assembled molecular networks (SAMNs) at the liquid/graphite interface using a single molecular building block, a chiral dehydrobenzo[12]annulene (cDBA) derivative with three chiral alkoxy and three hydroxy groups positioned in an alternating manner on the DBA core. The cDBA molecules form homochiral hierarchical SAMNs consisting of triangular clusters of several sizes, the size of which can be tuned by solvent polarity and solute concentration, reaching periodicities as large as 9.3 nm. We demonstrate the successful transmission of chirality information from the single molecular level to the hierarchical SAMN level, in a process that is mediated by dynamic self-sorting.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Kazuya Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
7
|
Deng C, Wang J, Zhu H, Xu C, Fan X, Wen Y, Huang P, Lin H, Li Q, Chi L. Constructing Two-Dimensional Distorted Kagome Lattices on Ag(111). J Phys Chem Lett 2023; 14:9584-9589. [PMID: 37862333 DOI: 10.1021/acs.jpclett.3c02620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Two-dimensional (2D) tessellation of organic species acquired increased interest recently because of their potential applications in physics, biology, and chemistry. Herein, we successfully synthesized the chiral distorted Kagome lattice p3 (333) with bicomponent precursors on Ag(111). Scanning tunneling microscopy and density functional calculation studies reveal that the networks are formed by multiple intermolecular hydrogen bonds. The network structures can be rationally tuned by adjusting the stoichiometric ratio of the reaction precursors. Our study provides new strategies to synthesize complex low-dimensional nanostructures on metal surfaces.
Collapse
Affiliation(s)
- Chuan Deng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Junbo Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Huaming Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Chaojie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xing Fan
- Research Center for Carbon-Based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, People's Republic of China
| | - Yinglai Wen
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Peipei Huang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Qing Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, Shaanxi 710119, People's Republic of China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
- Department of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau 999078, People's Republic of China
| |
Collapse
|
8
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
9
|
Li C, Xu Z, Zhang Y, Li J, Xue N, Li R, Zhong M, Wu T, Wang Y, Li N, Shen Z, Hou S, Berndt R, Wang Y, Gao S. Structure transformation from Sierpiński triangles to chains assisted by gas molecules. Natl Sci Rev 2023; 10:nwad088. [PMID: 37564921 PMCID: PMC10411674 DOI: 10.1093/nsr/nwad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/31/2022] [Accepted: 02/01/2023] [Indexed: 08/12/2023] Open
Abstract
Reversible transformations between fractals and periodic structures are of fundamental importance for understanding the formation mechanism of fractals. Currently, it is still a challenge to controllably achieve such a transformation. We investigate the effect of CO and CO2 molecules on Sierpiński triangles (STs) assembled from Fe atoms and 4,4″-dicyano-1,1':3',1″-terphenyl (C3PC) molecules on Au surfaces. Using scanning tunneling microscopy, we discover that the gas molecules induce a transition from STs into 1D chains. Based on density functional theory modeling, we propose that the atomistic mechanism involves the transformation of a stable 3-fold coordination Fe(C3PC)3 motif to Fe(C3PC)4 with an axially bonded CO molecule. CO2 causes the structural transformation through a molecular catassembly process.
Collapse
Affiliation(s)
- Chao Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel 24098, Germany
| | - Zhen Xu
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yajie Zhang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Jie Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Na Xue
- Central Laboratory, Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, the Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Ruoning Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Mingjun Zhong
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Tianhao Wu
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Yifan Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Na Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Ziyong Shen
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Shimin Hou
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, Kiel 24098, Germany
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Song Gao
- Institute of Spin Science and Technology, South China University of Technology, Guangzhou 511442, China
| |
Collapse
|
10
|
Dai J, Zhao X, Peng Z, Li J, Lin Y, Wen X, Xing L, Zhao W, Shang J, Wang Y, Liu J, Wu K. Assembling Surface Molecular Sierpiński Triangle Fractals via K +-Invoked Electrostatic Interaction. J Am Chem Soc 2023. [PMID: 37314227 DOI: 10.1021/jacs.3c03691] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular Sierpiński triangles (STs), a family of elegant and well-known fractals, can be prepared on surfaces with atomic precision. Up to date, several kinds of intermolecular interactions such as hydrogen bond, halogen bond, coordination, and even covalent bond have been employed to construct molecular STs on metal surfaces. Herein a series of defect-free molecular STs have been fabricated via electrostatic attraction between potassium cations and electronically polarized chlorine atoms in 4,4″-dichloro-1,1':3',1″-terphenyl (DCTP) molecules on Cu(111) and Ag(111). The electrostatic interaction is confirmed both experimentally by scanning tunneling microscopy and theoretically by density functional theory calculations. These findings illustrate that electrostatic interaction can serve as an efficient driving force to construct molecular fractals, which enriches our toolbox for the bottom-up fabrication of complex functional supramolecular nanostructures.
Collapse
Affiliation(s)
- Jingxin Dai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinwei Zhao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhantao Peng
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Yuxuan Lin
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaojie Wen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lingbo Xing
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenhui Zhao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Shang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, Department of Electronics, Peking University, Beijing 100871, China
| | - Jing Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Zhou Y, Yang L, Liu Z, Sun Y, Huang J, Liu B, Wang Q, Wang L, Miao Y, Xing M, Hu Z. Reversible adhesives with controlled wrinkling patterns for programmable integration and discharging. SCIENCE ADVANCES 2023; 9:eadf1043. [PMID: 37043582 PMCID: PMC10096647 DOI: 10.1126/sciadv.adf1043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Switchable and minimally invasive tissue adhesives have great potential for medical applications. However, on-demand adherence to and detachment from tissue surfaces remain difficult. We fabricated a switchable hydrogel film adhesive by designing pattern-tunable wrinkles to control adhesion. When adhered to a substrate, the compressive stress generated from the bilayer system leads to self-similar wrinkling patterns at short and long wavelengths, regulating the interfacial adhesion. To verify the concept and explore its application, we established a random skin flap model, which is a crucial strategy for repairing severe or large-scale wounds. Our hydrogel adhesive provides sufficient adhesion for tissue sealing and promotes neovascularization at the first stage, and then gradually detaches from the tissue while a dynamic wrinkling pattern transition happens. The gel film can be progressively ejected out from the side margins after host-guest integration. Our findings provide insights into tunable bioadhesion by manipulating the wrinkling pattern transition.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yang Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Bingcheng Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Quan Wang
- School of Civil Engineering, Shantou University, Shantou 515063, P.R. China
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
12
|
Li SY, Chen T, Chen Q, Wang D, Zhu G. Concentration-modulated global organizational chirality at the liquid/solid interface. Chem Sci 2023; 14:2646-2651. [PMID: 36908959 PMCID: PMC9993838 DOI: 10.1039/d2sc06746c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023] Open
Abstract
Understanding the origin of homochirality in macroscopic assemblies and manipulating organizational chirality still remain a challenge. Herein, homochirality is achieved by combination of the majority-rules principle and concentration-dependent molecular assembly at the liquid/solid interface. A lower molecular concentration in solution facilitates more efficient amplification of chirality, which is formulated by a cooperative equilibrium model based on the Langmuir adsorption isotherm. Our results contribute to gain a new insight into chiral amplification in supramolecular assemblies. Particularly, a homochiral monolayer can be obtained just through modulating the molecular concentration in mixed enantiomer systems.
Collapse
Affiliation(s)
- Shu-Ying Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Ting Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P.R. China.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qi Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 P.R. China.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
13
|
Zhu X, Zhang C, Ma H, Lu F. Stereo-Recognition of Hydrogen Bond and Its Implications for Lignin Biomimetic Synthesis. Biomacromolecules 2022; 23:4985-4994. [PMID: 36332059 DOI: 10.1021/acs.biomac.2c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hydrogen bond (H-bond) is essential to stabilizing the three-dimensional biological structure such as protein, cellulose, and lignin, which are integral parts of animal and plant cells; thus, stereo-recognition of the H-bond is extremely attractive. Herein, a methodology combining the variable-temperature 1H NMR technique with the density functional theory was established to recognize the underlying H-bonding patterns in lignin diastereomers. This method successfully classified the intramolecular and intermolecular H-bonds with slope values varying between 50.2-201.5 and 221.9-655.4, respectively, from the natural logarithm of the hydroxyl proton chemical shift versus the inverse of the temperature plot. Moreover, this slope was found to be correlated with the interaction distance between the H-bond donor and acceptor. Finally, it was proposed that the stereo-preferential formation of the β-O-4 structure (erythro vs threo form) during lignin biomimetic synthesis was probably influenced by their intramolecular H-bonding patterns, thus making it easier to reach thermodynamic equilibrium.
Collapse
Affiliation(s)
- Xuhai Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning110623, P. R. China
| | - Cong Zhang
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shanxi710069, P. R. China
| | - Haixia Ma
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an, Shanxi710069, P. R. China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning110623, P. R. China
| |
Collapse
|
14
|
Ordered Patterns of Copper Phthalocyanine Nanoflowers Grown Around Fe Islands on Au(111). J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Sulkanen AR, Wang M, Swartz LA, Sung J, Sun G, Moore JS, Sottos NR, Liu GY. Production of Organizational Chiral Structures by Design. J Am Chem Soc 2022; 144:824-831. [PMID: 35005904 DOI: 10.1021/jacs.1c10491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organizational chirality on surfaces has been of interest in chemistry and materials science due to its scientific importance as well as its potential applications. Current methods for producing organizational chiral structures on surfaces are primarily based upon the self-assembly of molecules. While powerful, the chiral structures are restricted to those dictated by surface reaction thermodynamics. This work introduces a method to create organizational chirality by design with nanometer precision. Using atomic force microscopy-based nanolithography, in conjunction with chosen surface chemistry, various chiral structures are produced with nanometer precision, from simple spirals and arrays of nanofeatures to complex and hierarchical chiral structures. The size, geometry, and organizational chirality is achieved in deterministic fashion, with high fidelity to the designs. The concept and methodology reported here provide researchers a new and generic means to carry out organizational chiral chemistry, with the intrinsic advantages of chiral structures by design. The results open new and promising applications including enantioselective catalysis, separation, and crystallization, as well as optical devices requiring specific polarized radiation and fabrication and recognition of chiral nanomaterials.
Collapse
Affiliation(s)
- Audrey R Sulkanen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Minyuan Wang
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States
| | - Logan A Swartz
- Biophysics Graduate Group, University of California, Davis, California 95616, United States
| | - Jaeuk Sung
- Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gang Sun
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States.,Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, United States
| | - Jeffrey S Moore
- Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nancy R Sottos
- Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gang-Yu Liu
- Department of Chemistry, University of California, Davis, California 95616, United States.,Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States.,Biophysics Graduate Group, University of California, Davis, California 95616, United States
| |
Collapse
|
16
|
Li C, Meng X, Weismann A, von Glasenapp JS, Hamer S, Xiang F, Pignedoli CA, Herges R, Berndt R. Effect of an axial ligand on the self-assembly of molecular platforms. Phys Chem Chem Phys 2022; 24:28864-28869. [DOI: 10.1039/d2cp04760h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sub-monolayer amounts of trioxatriangulenium (TOTA) molecules functionalized with biphenyl on Ag(111) were investigated with scanning tunnelling microscopy.
Collapse
Affiliation(s)
- Chao Li
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Xiangzhi Meng
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Jan-Simon von Glasenapp
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Sebastian Hamer
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Feifei Xiang
- nanotech@surfaces Laboratory, EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Carlo A. Pignedoli
- nanotech@surfaces Laboratory, EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
17
|
Li SW, Zhang RX, Kang LX, Li DY, Xie YL, Wang CX, Liu PN. Steering Metal-Organic Network Structures through Conformations and Configurations on Surfaces. ACS NANO 2021; 15:18014-18022. [PMID: 34677047 DOI: 10.1021/acsnano.1c06615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular adsorption conformations and arrangement configurations on surfaces are important structural aspects of surface stereochemistry, but their roles in steering the structures of metal-organic networks (MONs) remain vague and unexplored. In this study, we constructed MONs by the coordination self-assembly of isocyanides on Cu(111) and Ag(111) surfaces and demonstrated that the MON structures can be steered by surface stereochemistry, including the adsorption conformations of the isocyanide molecules and the arrangement configurations of the coordination nodes and subunits. The coordination self-assembly of 1,4-phenylene diisocyanobenzene afforded a honeycomb MON consisting of 3-fold (isocyano)3-Cu motifs on a Cu(111) surface. In contrast, geometrically different chevron-shaped 1,3-phenylene diisocyanobenzene (m-DICB) failed to generate a MON, which is ascribable to its standing conformation on the Cu(111) surface. However, m-DICB was adsorbed in a flat conformation on a Ag(111) surface, which has a larger lattice constant than a Cu(111) surface, and smoothly underwent coordination self-assembly to form a MON consisting of (isocyano)3-Ag motifs. Interestingly, only C3-Ag nodes with heterotactic configurations could grow into larger subunits; those subunits with heterotactic configurations further grew into Sierpiński triangle fractals (up to fourth order), while subunits with homotactic configurations afforded a triangular MON.
Collapse
Affiliation(s)
- Shi-Wen Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruo-Xi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Li-Xia Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu-Li Xie
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cheng-Xin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|