1
|
Zeng H, Yu P, Zhang J, Wan X. Regioselective and Homochiral Supramolecular Polymerization of Nanotadpole Aggremers of Poly(phenylacetylene) Derivatives. Angew Chem Int Ed Engl 2024:e202417792. [PMID: 39530433 DOI: 10.1002/anie.202417792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Biological homochirality is a signature of life. Supramolecular polymerization is effective to achieve high hierarchical homochirality in nature, but has not been well-explored. Herein, we report regioselective and homochiral supramolecular polymerization of chiral nanotadpole aggregates made of either synthetic helical poly(phenylacetylene)s or chirality-amplified co-assembly of chiral and achiral poly(phenylacetylene)s. The twisted nanotadpole aggregates with high screw-sense preference polymerized as monomers (aggremers) into supramolecular chains in a head-to-tail regioselective and stepwise manner. Supramolecular copolymerization of enantiomeric aggremers favored formation of homochiral hierarchical supramolecular structures as visualized by TEM. Chiral hexagonal columnar mesophase of aggremers was responsive for the stereoselectivity. The work opens a gate to controllably and effectively construct functional chiral supramolecular materials and deepens the understanding of hierarchical biological homochirality.
Collapse
Affiliation(s)
- Hua Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemical and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peiyao Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemical and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemical and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemical and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Cai C, Tang H, Li F, Xu Z, Lin J, Li D, Tang Z, Yang C, Gao L. Archimedean Spirals with Controllable Chirality: Disk Substrate-Mediated Solution Assembly of Rod-Coil Block Copolymers. JACS AU 2024; 4:2363-2371. [PMID: 38938804 PMCID: PMC11200227 DOI: 10.1021/jacsau.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Spirals are common in nature; however, they are rarely observed in polymer self-assembly systems, and the formation mechanism is not well understood. Herein, we report the formation of two-dimensional (2D) spiral patterns via microdisk substrate-mediated solution self-assembly of polypeptide-based rod-coil block copolymers. The spiral pattern consists of multiple strands assembled from the block copolymers, and two central points are observed. The spirals fit well with the Archimedean spiral model, and their chirality is dependent on the chirality of the polypeptide blocks. As revealed by a combination of experiments and theoretical simulations, these spirals are induced by an interplay of the parallel ordering tendency of the strands and circular confinement of the microdisks. This work presents the first example regarding substrate-mediated self-assembly of block copolymers into spirals. The gained information could not only enhance our understanding of natural spirals but also assist in both the controllable preparations and applications of spiral nanostructures.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Hongfeng Tang
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Feiyan Li
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Zhanwen Xu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiaping Lin
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Da Li
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Zhengmin Tang
- Department
of Laboratory Medicine, the First Affiliated Hospital, College of
Medicine, Zhejiang University, Hangzhou 311121, China
| | - Chunming Yang
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Liang Gao
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Wang Y, Xie F, Zhao L. Spatially Confined Nanoreactors Designed for Biological Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310331. [PMID: 38183369 DOI: 10.1002/smll.202310331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/13/2023] [Indexed: 01/08/2024]
Abstract
The applications of nanoreactors in biology are becoming increasingly significant and prominent. Specifically, nanoreactors with spatially confined, due to their exquisite design that effectively limits the spatial range of biomolecules, attracted widespread attention. The main advantage of this structure is designed to improve reaction selectivity and efficiency by accumulating reactants and catalysts within the chambers, thus increasing the frequency of collisions between reactants. Herein, the recent progress in the synthesis of spatially confined nanoreactors and their biological applications is summarized, covering various kinds of nanoreactors, including porous inorganic materials, porous crystalline materials with organic components and self-assembled polymers to construct nanoreactors. These design principles underscore how precise reaction control could be achieved by adjusting the structure and composition of the nanoreactors to create spatial confined. Furthermore, various applications of spatially confined nanoreactors are demonstrated in the biological fields, such as biocatalysis, molecular detection, drug delivery, and cancer therapy. These applications showcase the potential prospects of spatially confined nanoreactors, offering robust guidance for future research and innovation.
Collapse
Affiliation(s)
- Yating Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Fengjuan Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Liang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
4
|
Sun L, Gong Y, Che Y, Ji H, Liu B, Che Y, Zhao J. Light-Regulated Nucleation for Growing Highly Uniform Single-Crystalline Microrods. Angew Chem Int Ed Engl 2024; 63:e202402253. [PMID: 38497168 DOI: 10.1002/anie.202402253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
We report a light-irradiation method to control the synchronous nucleation of a donor-acceptor (D-A) fluorophore for growing highly uniform single-crystalline microrods, which is in sharp contrast to the prevailing methods of restricting spontaneous nucleation and additionally adding seeds. The D-A fluorophore was observed to undergo photoinduced electron transfer to CrCl3, leading to the generation of HCl and the subsequent protonation of the D-A fluorophore. By intensifying photoirradiation or prolonging its duration, the concentration of protonated D-A fluorophores can be rapidly increased to a high supersaturation level. This results in the formation of a controlled number of nuclei in a synchronous manner, which in turn kickstart the epitaxial growth of protonated D-A fluorophores towards uniform single-crystalline microrods of controlled sizes. The light-regulated synchronous nucleation and uniform growth of microrods are a unique phenomenon that can only be achieved by specific Lewis acids, making it a novel probing method for sensitively detecting strong Lewis acids such as chromium chloride.
Collapse
Affiliation(s)
- Lishan Sun
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjun Gong
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxue Che
- HT-NOVA Co., Ltd., Zhuyuan Road, Shunyi District, Beijing, 101312, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Gao L, Tang Z, Lin J, Cai C, Guerin G. Living Growth Kinetics of Polymeric Micelles on a Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9613-9621. [PMID: 38656106 DOI: 10.1021/acs.langmuir.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Living growth of micelles on the substrate is an intriguing phenomenon; however, little is known about its growth kinetics, especially from a theoretical viewpoint. Here, we examine the living growth kinetics of polymeric micelles on a hydrophobic substrate immersed in an aqueous solution. The block copolymers first assemble into short cylinder seeds anchored on the substrate. Then, the small aggregates of block copolymers in the solutions fuse onto the active ends of the anchored seeds, leading to micelle growth on the substrate. A theoretical model is proposed to interpret such living growth kinetics. It is revealed that the growth rate coefficient on the substrate is independent of the copolymer concentration and the multistep feedings; however, it is significantly affected by the surface hydrophobicity. Brownian dynamics simulations further support the proposed growth mechanism and the kinetic model. This work enriches living assembly systems and provides guidance for fabricating bioinspired surface nanostructures.
Collapse
Affiliation(s)
- Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhengmin Tang
- Department of Laboratory Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 311121, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gerald Guerin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Parkin HC, Street STG, Gowen B, Da-Silva-Correa LH, Hof R, Buckley HL, Manners I. Mechanism of Action and Design of Potent Antibacterial Block Copolymer Nanoparticles. J Am Chem Soc 2024; 146:5128-5141. [PMID: 38356186 DOI: 10.1021/jacs.3c09033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Self-assembled polymer nanoparticles are promising antibacterials, with nonspherical morphologies of particular interest as recent work has demonstrated enhanced antibacterial activity relative to their spherical counterparts. However, the reasons for this enhancement are currently unclear. We have performed a multifaceted analysis of the antibacterial mechanism of action of 1D nanofibers relative to nanospheres by the use of flow cytometry, high-resolution microscopy, and evaluations of the antibacterial activity of pristine and tetracycline-loaded nanoparticles. Low-length dispersity, fluorescent diblock copolymer nanofibers with a crystalline poly(fluorenetrimethylenecarbonate) (PFTMC) core (length = 104 and 472 nm, height = 7 nm, width = 10-13 nm) and a partially protonated poly(dimethylaminoethyl methacrylate) (PDMAEMA) corona (length = 12 nm) were prepared via seeded growth living crystallization-driven self-assembly. Their behavior was compared to that of analogous nanospheres containing an amorphous PFTMC core (diameter of 12 nm). While all nanoparticles were uptaken into Escherichia coli W3110, crystalline-core nanofibers were observed to cause significant bacterial damage. Drug loading studies indicated that while all nanoparticle antibacterial activity was enhanced in combination with tetracycline, the enhancement was especially prominent when small nanoparticles (ca. 15-25 nm) were employed. Therefore, the identified differences in the mechanism of action and the demonstrated consequences for nanoparticle size and morphology control may be exploited for the future design of potent antibacterial agents for overcoming antibacterial resistance. This study also reinforces the requirement of morphological control over polymer nanoparticles for biomedical applications, as differences in activity are observed depending on their size, shape, and core-crystallinity.
Collapse
Affiliation(s)
- Hayley C Parkin
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Steven T G Street
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Brent Gowen
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Luiz H Da-Silva-Correa
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Department of Civil Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Rebecca Hof
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Heather L Buckley
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Department of Civil Engineering, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
7
|
Teng F, Xiang B, Liu L, Varlas S, Tong Z. Precise Control of Two-Dimensional Hexagonal Platelets via Scalable, One-Pot Assembly Pathways Using Block Copolymers with Crystalline Side Chains. J Am Chem Soc 2023; 145:28049-28060. [PMID: 38088129 DOI: 10.1021/jacs.3c09370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Crystallization-driven self-assembly (CDSA) of block copolymers (BCPs) in selective solvents provides a promising route for direct access to two-dimensional (2D) platelet micelles with excellent uniformity, although significant limitations also exist for this robust approach, such as tedious, multistep procedures, and low yield of assembled materials. Herein, we report a facile strategy for massively preparing 2D, highly symmetric hexagonal platelets with precise control over their dimensions based on BCPs with crystalline side chains. Mechanistic studies unveiled that the formation of hexagonal platelets was subjected to a hierarchical self-assembly process, involving an initial stage of formation of kinetically trapped spheres upon cooling driven by solvophobic interactions, and a second stage of fusion of such spheres to the 2D nuclei to initiate the lateral growth of hexagonal platelets via sequential particle attachments driven by thermodynamically ordered reorganization of the BCP upon aging. Moreover, the size of the developed 2D hexagonal platelets could be finely regulated by altering the copolymer concentration over a broad concentration range, enabling scale-up to a total solids concentration of at least 6% w/w. Our work reveals a new mechanism to create uniform 2D core-shell nanoparticles dictated by crystallization and particle fusion, while it also provides an alternative facile strategy for the design of soft materials with precise control of their dimensions, as well as for the scalability of the derived nanostructures.
Collapse
Affiliation(s)
- Feiyang Teng
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingbing Xiang
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liping Liu
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill S3 7HF, Sheffield, U.K
| | - Zaizai Tong
- School of Materials Science and Engineering and Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
8
|
Jin H, Wu Z, Lin W, Chen Y, Zhang J, Zheng R, Wei H, Chen Q, Qian Q, Huang J, Zhang J, Yan Y. Formation of Size-Controllable Tetragonal Nanoprisms by Crystallization-Directed Ionic Self-Assembly of Anionic Porphyrin and PEO-Containing Triblock Cationic Copolymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300688. [PMID: 37029578 DOI: 10.1002/smll.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
The creation of anisotropic nanostructures with precise size control is desirable for new properties and functions, but it is challenging for ionic self-assembly (ISA) because of the non-directional electrostatic interactions. Herein, the formation of size-controllable tetragonal nanoprisms is reported via crystallization-directed ionic self-assembly (CDISA) through evaporating a micellar solution on solid substrates. First, ISA is designed with a crystalline polyethylene oxide (PEO) containing cationic polymer poly(2-(2-guanidinoethoxy)ethyl methacrylate)-b-poly(ethyleneoxide)-b-poly(2-(2-guanidinoethoxy)-ethylmethacrylate) (PGn -PEO230 -PGn ) and an anionic 5,10,15,20-Tetrakis(4-sulfonatophenyl) porphyrin (TPPS) to form micelles in aqueous solution. The PG segments binds excessive TPPS with amplenet chargeto form hydrophilic corona, while the PEO segments are unprecedentedly dehydrated and tightly packed into cores. Upon naturally drying the micellar solution on a silicon wafer, PEO crystallizationdirects the micelles to aggregate into square nanoplates, which are further connected to nanoprisms. Length and width of the nanoprisms can be facilely tuned by varying the initial concentration. In this hierarchical process, the aqueous self-assembly is prerequisite and the water evaporation rate is crucial for the formation of nanostructures, which provides multiple factors for morphology regulating. Such precise size-control strategy is highly expected to provide a new vision for the design of advanced materials with size controllable anisotropic nanostructures.
Collapse
Affiliation(s)
- Hongjun Jin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ziyan Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Weilin Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Yinye Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jingran Zhang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Ruyi Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Haibing Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
9
|
Cai C, Lin J. Recent advances in the solution self‐assembly of polypeptides. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering East China University of Science and Technology Shanghai China
| |
Collapse
|
10
|
Ellis CE, Garcia-Hernandez JD, Manners I. Scalable and Uniform Length-Tunable Biodegradable Block Copolymer Nanofibers with a Polycarbonate Core via Living Polymerization-Induced Crystallization-Driven Self-assembly. J Am Chem Soc 2022; 144:20525-20538. [DOI: 10.1021/jacs.2c09715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charlotte E. Ellis
- Department of Chemistry, University of Victoria, Victoria BC V8P 5C2, Canada
| | | | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria BC V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria V8P 5C2, Canada
| |
Collapse
|
11
|
Huang YC, Chen WC, Kuo SW. Mesoporous Phenolic/POSS Hybrids Induced by Microphase Separation Arising from Competitive Hydrogen Bonding Interactions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yen-Chi Huang
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung804, Taiwan
| | - Wei-Cheng Chen
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung804, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung804, Taiwan
| |
Collapse
|
12
|
Lei S, Tian J, Kang Y, Zhang Y, Manners I. AIE-Active, Stimuli-Responsive Fluorescent 2D Block Copolymer Nanoplatelets Based on Corona Chain Compression. J Am Chem Soc 2022; 144:17630-17641. [PMID: 36107414 DOI: 10.1021/jacs.2c07133] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aggregation-induced emission (AIE) represents a powerful tool in nanoscience as a result of enhanced luminescence in the condensed state. Although AIEgenic materials have been utilized in a wide range of applications, well-defined self-assembled nanoparticles with tailorable and uniform dimensions and morphology remain challenging to access. Herein, we use the seeded growth, living crystallization-driven self-assembly (CDSA) method to prepare size-tunable and uniform AIE-active 2D nanoplatelets from amphiphilic block copolymer (BCP) precursors with a crystallizable core-forming block and a corona-forming block to which tetraphenylethene (TPE) groups were covalently grafted as AIE-active pendants. The nanoplatelets were formed as a result of a solvophobicity-induced 1D to 2D morphology preference change, which accompanied the seeded growth of a BCP with a quaternized corona-forming block bearing the TPE luminogen. The 2D nanoplatelets exhibited a solvent-responsive fluorescent emission, and examples with coronas containing homogeneously distributed AIE-active TPE groups and Hg(II)-capturing thymine units exhibited excellent performance as proof-of-concept "turn-on" sensors for Hg(II) detection with a rapid response, high selectivity, and a low detection limit (5-125 × 10-9 M, i.e., 1-25 ppb). The fluorescence intensity was found to be nonlinear with respect to analyte concentration and to increase with the area of the nanoplatelet. This behavior is consistent with a cooperative mechanism based on changes in the steric compression of the corona chains, which gives rise to a restriction of the intramolecular motion (RIM) effect.
Collapse
Affiliation(s)
- Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Jia Tian
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Yuetong Kang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Yifan Zhang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
13
|
Jin X, Zhang C, Lin J, Cai C, Chen J, Gao L. Fusion Growth of Two-Dimensional Disklike Micelles via Liquid-Crystallization-Driven Self-Assembly. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Jin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianding Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Harniman RL, Pearce S, Manners I. Exploring the "Living" Growth of Block Copolymer Nanofibers from Surface-Confined Seeds by In Situ Solution-Phase Atomic Force Microscopy. J Am Chem Soc 2022; 144:951-962. [PMID: 34985896 DOI: 10.1021/jacs.1c11209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Living crystallization-driven self-assembly of polymeric and molecular amphiphiles is of growing interest as a seeded growth route to uniform 1D, 2D, and more complex micellar nanoparticles with controlled dimensions and a range of potential applications. Although most studies have been performed using colloidally stable seeds in bulk solution, growth of block copolymer (BCP) nanofibers from seeds confined to a surface is attracting increased attention. Herein, we have used atomic force microscopy (AFM) to undertake detailed studies of the growth of BCP nanofibers from immobilized seeds located on a Si surface. Through initial ex situ AFM studies and in situ AFM video analysis in solution, we determined that growth occurred in four stages, whereby an initial surface-bound growth regime transitions to surface-limited growth. As the nanofiber length increases, surface influence is diminished as the newly grown micelle segment is no longer bound to the Si substrate. Finally, a surface-independent regime occurs where nanofiber growth continues into bulk solution. In addition to the anticipated nanofiber elongation, our studies revealed occasional examples of AFM tip-induced core fragmentation. In these cases, the termini of the newly formed fragments were also active to further growth. Furthermore, unidirectional growth was detected in cases where the seed was oriented at a significant angle with respect to the surface, thereby restricting unimer access to one terminus.
Collapse
Affiliation(s)
- Robert L Harniman
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Samuel Pearce
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.,Bristol Centre for Functional Nanomaterials, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
15
|
Raza F, Zafar H, Khan MW, Ullah A, Khan AU, Baseer A, Fareed R, Sohail M. Recent advances in the targeted delivery of paclitaxel nanomedicine for cancer therapy. MATERIALS ADVANCES 2022; 3:2268-2290. [DOI: 10.1039/d1ma00961c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer cases have reached an all-time high in the current era.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | - Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, P. R. China
| | | | - Abdul Baseer
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Rameesha Fareed
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan
| | - Muhammad Sohail
- School of Pharmacy, Yantai University, Shandong, 264005, China
| |
Collapse
|