1
|
Chi PF, Wang JJ, Zhang JW, Chuang YL, Lee ML, Sheu JK. Low-resistivity Ohmic contacts of Ti/Al on few-layered 1T'-MoTe 2/2H-MoTe 2 heterojunctions grown by chemical vapor deposition. NANOSCALE HORIZONS 2024; 9:2060-2066. [PMID: 39283319 DOI: 10.1039/d4nh00347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
This study explores the phase-controlled growth of few-layered 2H-MoTe2, 1T'-MoTe2, and 2H-/1T'-MoTe2 heterostructures and their impacts on metal contact properties. Cold-wall chemical vapor deposition (CW-CVD) with varying growth rates of MoOx and reaction temperatures with Te vapors enabled the growth of continuous thin films of either 1T'-MoTe2 or 2H-MoTe2 phases on two-inch sapphire substrates. This methodology facilitates the meticulous optimization of chemical vapor deposition (CVD) parameters, enabling the realization of phase-controlled growth of few-layered MoTe2 thin films and their subsequent heterostructures. The study further investigates the influence of a 1T'-MoTe2 intermediate layer on the electrical properties of metal contacts on few-layered 2H-MoTe2. Bi-layer Ti/Al contacts directly deposited on 2H-MoTe2 exhibited Schottky behavior, indicating inefficient carrier transport. However, introducing a few-layered 1T'-MoTe2 intermediate layer between the metal and 2H-MoTe2 layers improved the contact characteristics significantly. The resulting Al/Ti/1T'-MoTe2/2H-MoTe2 contact scheme demonstrates Ohmic behavior with a specific contact resistance of around 1.7 × 10-4 Ω cm2. This substantial improvement is attributed to the high carrier concentration of the 1T'-MoTe2 intermediate layer which could be attributed tentatively to the increased tunneling events across the van der Waals gap and enhancing carrier transport between the metal and 2H-MoTe2.
Collapse
Affiliation(s)
- Ping-Feng Chi
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan.
| | - Jing-Jie Wang
- Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Jing-Wen Zhang
- Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Yung-Lan Chuang
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan.
| | - Ming-Lun Lee
- Department of Electro-Optical Engineering, Southern Taiwan University of Science and Technology, Tainan City, 71001, Taiwan.
| | - Jinn-Kong Sheu
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan.
- Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan City, 70101, Taiwan
| |
Collapse
|
2
|
Guo Z, Han M, Zeng S, Yin Z, Tan J, Niu K, Zhao E, Zhao Y, Liu B, Zou X, Lin J. Intrinsic Grain Boundary Structure and Enhanced Defect States in Air-Sensitive Polycrystalline 1T'-WTe 2 Monolayer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402219. [PMID: 38843883 DOI: 10.1002/adma.202402219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/03/2024] [Indexed: 06/15/2024]
Abstract
Monolayer WTe2 has attracted significant attention for its unconventional superconductivity and topological edge states. However, its air sensitivity poses challenges for studying intrinsic defect structures. This study addresses this issue using a custom-built inert gas interconnected system, and investigate the intrinsic grain boundary (GB) structures of monolayer polycrystalline 1T' WTe2 grown by nucleation-controlled chemical vapor deposition (CVD) method. These findings reveal that GBs in this system are predominantly governed by W-Te rhombi with saturated coordination, resulting in three specific GB prototypes without dislocation cores. The GBs exhibit anisotropic orientations influenced by kinks formed from these fundamental units, which in turn affect the distribution of grains in various shapes within polycrystalline flakes. Scanning tunneling microscopy/spectroscopy (STM/S) analysis further reveals metallic states along the intrinsic 120° twin grain boundary (TGB), consistent with computed band structures. This systematic exploration of GBs in air-sensitive 1T' WTe2 monolayers provides valuable insights into emerging GB-related phenomena.
Collapse
Affiliation(s)
- Zenglong Guo
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Mengjiao Han
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Shengfeng Zeng
- Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhouyi Yin
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Kangdi Niu
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Erding Zhao
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yue Zhao
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Junhao Lin
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, 518045, China
| |
Collapse
|
3
|
Altvater M, Muratore C, Snure M, Glavin NR. Two-Step Conversion of Metal and Metal Oxide Precursor Films to 2D Transition Metal Dichalcogenides and Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400463. [PMID: 38733217 DOI: 10.1002/smll.202400463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Indexed: 05/13/2024]
Abstract
The widely studied class of two-dimensional (2D) materials known as transition metal dichalcogenides (TMDs) are now well-poised to be employed in real-world applications ranging from electronic logic and memory devices to gas and biological sensors. Several scalable thin film synthesis techniques have demonstrated nanoscale control of TMD material thickness, morphology, structure, and chemistry and correlated these properties with high-performing, application-specific device metrics. In this review, the particularly versatile two-step conversion (2SC) method of TMD film synthesis is highlighted. The 2SC technique relies on deposition of a solid metal or metal oxide precursor material, followed by a reaction with a chalcogen vapor at an elevated temperature, converting the precursor film to a crystalline TMD. Herein, the variables at each step of the 2SC process including the impact of the precursor film material and deposition technique, the influence of gas composition and temperature during conversion, as well as other factors controlling high-quality 2D TMD synthesis are considered. The specific advantages of the 2SC approach including deposition on diverse substrates, low-temperature processing, orientation control, and heterostructure synthesis, among others, are featured. Finally, emergent opportunities that take advantage of the 2SC approach are discussed to include next-generation electronics, sensing, and optoelectronic devices, as well as catalysis for energy-related applications.
Collapse
Affiliation(s)
- Michael Altvater
- Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Christopher Muratore
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, 45469, OH, USA
| | - Michael Snure
- Air Force Research Laboratory, Sensors Directorate, WPAFB, OH, 45433, USA
| | - Nicholas R Glavin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, OH, 45433, USA
| |
Collapse
|
4
|
Zhang X, Dai J, Jin Z, Tao X, Zhong Y, Zheng Z, Hu X, Zhou L. Ion adsorption promotes Frank-van der Merwe growth of 2D transition metal tellurides. iScience 2024; 27:109378. [PMID: 38523797 PMCID: PMC10959663 DOI: 10.1016/j.isci.2024.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Reliable synthesis methods for high-quality, large-sized, and uniform two-dimensional (2D) transition-metal dichalcogenides (TMDs) are crucial for their device applications. However, versatile approaches to growing high-quality, large-sized, and uniform 2D transition-metal tellurides are rare. Here, we demonstrate an ion adsorption strategy that facilitates the Frank-van der Merwe growth of 2D transition-metal tellurides. By employing this method, we grow MoTe2 and WTe2 with enhanced lateral size, reduced thickness, and improved uniformity. Comprehensive characterizations confirm the high quality of as-grown MoTe2. Moreover, various characterizations verify the adsorption of K+ and Cl- ions on the top surface of MoTe2. X-ray photoelectron spectroscopy (XPS) analysis reveals that the MoTe2 is stoichiometric without K+ and Cl- ions and exhibits no discernable oxidation after washing. This top surface control strategy provides a new controlling knob to optimize the growth of 2D transition-metal tellurides and holds the potential for generalized to other 2D materials.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiuxiang Dai
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhitong Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinwei Tao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunlei Zhong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zemin Zheng
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianyu Hu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Dai B, Su Y, Guo Y, Wu C, Xie Y. Recent Strategies for the Synthesis of Phase-Pure Ultrathin 1T/1T' Transition Metal Dichalcogenide Nanosheets. Chem Rev 2024; 124:420-454. [PMID: 38146851 DOI: 10.1021/acs.chemrev.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The past few decades have witnessed a notable increase in transition metal dichalcogenide (TMD) related research not only because of the large family of TMD candidates but also because of the various polytypes that arise from the monolayer configuration and layer stacking order. The peculiar physicochemical properties of TMD nanosheets enable an enormous range of applications from fundamental science to industrial technologies based on the preparation of high-quality TMDs. For polymorphic TMDs, the 1T/1T' phase is particularly intriguing because of the enriched density of states, and thus facilitates fruitful chemistry. Herein, we comprehensively discuss the most recent strategies for direct synthesis of phase-pure 1T/1T' TMD nanosheets such as mechanical exfoliation, chemical vapor deposition, wet chemical synthesis, atomic layer deposition, and more. We also review frequently adopted methods for phase engineering in TMD nanosheets ranging from chemical doping and alloying, to charge injection, and irradiation with optical or charged particle beams. Prior to the synthesis methods, we discuss the configuration of TMDs as well as the characterization tools mostly used in experiments. Finally, we discuss the current challenges and opportunities as well as emphasize the promising fields for the future development.
Collapse
Affiliation(s)
- Baohu Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yueqi Su
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuqiao Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Changzheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Guan H, Zhao B, Zhao W, Ni Z. Liquid-precursor-intermediated synthesis of atomically thin transition metal dichalcogenides. MATERIALS HORIZONS 2023; 10:1105-1120. [PMID: 36628937 DOI: 10.1039/d2mh01207c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the rapid development of integrated electronics and optoelectronics, methods for the scalable industrial-scale growth of two-dimensional (2D) transition metal dichalcogenide (TMD) materials have become a hot research topic. However, the control of gas distribution of solid precursors in common chemical vapor deposition (CVD) is still a challenge, resulting in the growth of 2D TMDs strongly influenced by the location of the substrate from the precursor powder. In contrast, liquid-precursor-intermediated growth not only avoids the use of solid powders but also enables the uniform distribution of precursors on the substrate through spin-coating, which is much more favorable for the synthesis of wafer-scale TMDs. Moreover, the spin-coating process based on liquid precursors can control the thickness of the spin-coated films by regulating the solution concentration and spin-coating speed. Herein, this review focuses on the recent progress in the synthesis of 2D TMDs based on liquid-precursor-intermediated CVD (LPI-CVD) growth. Firstly, the different assisted treatments based on LPI-CVD strategies for monolayer 2D TMDs are introduced. Then, the progress in the regulation of the different physical properties of monolayer 2D TMDs by substitution of the transition metal and their corresponding heterostructures based on LPI-CVD growth are summarized. Finally, the challenges and perspectives of 2D TMDs based on the LPI-CVD method are discussed.
Collapse
Affiliation(s)
- Huiyan Guan
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Bei Zhao
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Weiwei Zhao
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Zhenhua Ni
- School of Physics, Southeast University, Nanjing 211189, China.
- Purple Mountain Laboratories, Nanjing 211111, China
| |
Collapse
|
7
|
Wang B, Zhao C, Wang C, Li R, Zhang G, Mu R, Fu Q. Low-temperature growth of ultrathin and epitaxial Mo 2C nanosheets via a vapor-liquid-solid process. NANOSCALE 2022; 14:9142-9149. [PMID: 35723539 DOI: 10.1039/d2nr02389j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the unique physical and chemical properties, transition metal carbides (TMCs) have many potential applications in the fields of energy conversion and catalysis. Chemical vapor deposition (CVD) is a promising method to synthesize TMCs. However, spatially inhomogeneous supply of transition metal precursor vapor in the normal CVD process generally leads to poor control of the morphology and uniformity of the products. Here, we report a vapor-liquid-solid (VLS) growth process where non-volatile Na2MoO4 is used to act as a liquid precursor for the growth of uniform ultrathin Mo2C nanosheets on Al2O3(0001). The morphology of the nanosheets can be controlled by tuning the precursor concentration, annealing time and growth temperature. The roles of Na and the liquid-solid interface in consolidating Mo atoms and promoting the epitaxial growth of Mo2C nanosheets are demonstrated. Furthermore, we show that the liquid-solid interface can cause the crystalline phase transition of Mo2C nanosheets through verification experiments.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Changbao Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Chao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Guohui Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
8
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Pham PV, Bodepudi SC, Shehzad K, Liu Y, Xu Y, Yu B, Duan X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem Rev 2022; 122:6514-6613. [PMID: 35133801 DOI: 10.1021/acs.chemrev.1c00735] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A grand family of two-dimensional (2D) materials and their heterostructures have been discovered through the extensive experimental and theoretical efforts of chemists, material scientists, physicists, and technologists. These pioneering works contribute to realizing the fundamental platforms to explore and analyze new physical/chemical properties and technological phenomena at the micro-nano-pico scales. Engineering 2D van der Waals (vdW) materials and their heterostructures via chemical and physical methods with a suitable choice of stacking order, thickness, and interlayer interactions enable exotic carrier dynamics, showing potential in high-frequency electronics, broadband optoelectronics, low-power neuromorphic computing, and ubiquitous electronics. This comprehensive review addresses recent advances in terms of representative 2D materials, the general fabrication methods, and characterization techniques and the vital role of the physical parameters affecting the quality of 2D heterostructures. The main emphasis is on 2D heterostructures and 3D-bulk (3D) hybrid systems exhibiting intrinsic quantum mechanical responses in the optical, valley, and topological states. Finally, we discuss the universality of 2D heterostructures with representative applications and trends for future electronics and optoelectronics (FEO) under the challenges and opportunities from physical, nanotechnological, and material synthesis perspectives.
Collapse
Affiliation(s)
- Phuong V Pham
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Srikrishna Chanakya Bodepudi
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Khurram Shehzad
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Hunan 410082, China
| | - Yang Xu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Bin Yu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1569, United States
| |
Collapse
|
10
|
Tong X, Zhao Y, Zhuo Z, Yang Z, Wang S, Liu Y, Lu N, Li H, Zhai T. Dual‐Regulation of Defect Sites and Vertical Conduction by Spiral Domain for Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xipeng Tong
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Yang Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Zhiwen Zhuo
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology Key Laboratory of Functional Molecular Solids Ministry of Education and Department of Physics Anhui Normal University Wuhu Anhui 241000 P. R. China
| | - Zhenhong Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Shuzhe Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Ning Lu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology Key Laboratory of Functional Molecular Solids Ministry of Education and Department of Physics Anhui Normal University Wuhu Anhui 241000 P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| |
Collapse
|
11
|
Tong X, Zhao Y, Zhuo Z, Yang Z, Wang S, Liu Y, Lu N, Li H, Zhai T. Dual-Regulation of Defect Sites and Vertical Conduction by Spiral Domain for Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021; 61:e202112953. [PMID: 34871473 DOI: 10.1002/anie.202112953] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/10/2022]
Abstract
Insufficient active sites and weak vertical conduction are the intrinsic factors that restrict the electrocatalytic HER for transition-metal dichalcogenides. As a prototype, we proposed a model of spiral MoTe2 to optimize collectively the above issues. The conductive atomic force microscopy of an individual spiral reveals that the retentive vertical conduction irrespective of layer thickness benefits from the connected screw dislocation lines between interlayers. Theoretical calculations uncover that the regions near the edge step of the spiral structures more easily form Te vacancies and have lower ΔGH * as extra active sites. A single spiral MoTe2 -based on-chip microcell was fabricated to extract HER activity and achieved an ultrahigh current density of 3000 mA cm-2 at an overpotential of 0.4 V, which is about two orders of magnitude higher than the exfoliated counterpart. Profoundly, this unusual spiral model will initiate a new pathway for triggering other inert catalytic reactions.
Collapse
Affiliation(s)
- Xipeng Tong
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yang Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhiwen Zhuo
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| | - Zhenhong Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Shuzhe Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ning Lu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, and Department of Physics, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
12
|
Abstract
Salt-assisted chemical vapor deposition (SA-CVD), which uses halide salts (e.g., NaCl, KBr, etc.) and molten salts (e.g., Na2MoO4, Na2WO4, etc.) as precursors, is one of the most popular methods favored for the fabrication of two-dimensional (2D) materials such as atomically thin metal chalcogenides, graphene, and h-BN. In this review, the distinct functions of halogens (F, Cl, Br, I) and alkali metals (Li, Na, K) in SA-CVD are first clarified. Based on the current development in SA-CVD growth and its related reaction modes, the existing methods are categorized into the Salt 1.0 (halide salts-based) and Salt 2.0 (molten salts-based) techniques. The achievements, advantages, and limitations of each technique are discussed in detail. Finally, new perspectives are proposed for the application of SA-CVD in the synthesis of 2D transition metal dichalcogenides for advanced electronics.
Collapse
Affiliation(s)
- Shisheng Li
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| |
Collapse
|