1
|
Chandra SD, Gunasekera S, Noichl BP, Patrick BO, Perrin DM. Synthesis of (2 S,3 R,4 R)-Dihydroxyisoleucine for Use in Amatoxin Synthesis. J Org Chem 2024; 89:12739-12747. [PMID: 39167711 DOI: 10.1021/acs.joc.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We report a streamlined synthesis of (2S,3R,4R)-4,5-dihydroxy isoleucine (DHIle), an amino acid found in α-amanitin, which appears to be critical for toxicity. This synthetic route is transition metal-free and enables the production of significant quantities of DHIle with suitable protection for use in peptide synthesis. Its incorporation into a cytotoxic amatoxin analog is reported.
Collapse
Affiliation(s)
- Shambhu Deo Chandra
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Shanal Gunasekera
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Benjamin Philipp Noichl
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 Canada
| |
Collapse
|
2
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Chen FJ, Lin W, Chen FE. Non-symmetric stapling of native peptides. Nat Rev Chem 2024; 8:304-318. [PMID: 38575678 DOI: 10.1038/s41570-024-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Stapling has emerged as a powerful technique in peptide chemistry. It enables precise control over peptide conformation leading to enhanced properties such as improved stability and enhanced binding affinity. Although symmetric stapling methods have been extensively explored, the field of non-symmetric stapling of native peptides has received less attention, largely as a result of the formidable challenges it poses - in particular the complexities involved in achieving the high chemo-selectivity and site-selectivity required to simultaneously modify distinct proteinogenic residues. Over the past 5 years, there have been significant breakthroughs in addressing these challenges. In this Review, we describe the latest strategies for non-symmetric stapling of native peptides, elucidating the protocols, reaction mechanisms and underlying design principles. We also discuss current challenges and opportunities this field offers for future applications, such as ligand discovery and peptide-based therapeutics.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
| | - Wanzhen Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Fen-Er Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
4
|
Todorovic M, Blanc A, Wang Z, Lozada J, Froelich J, Zeisler J, Zhang C, Merkens H, Benard F, Perrin DM. 5-Hydroxypyrroloindoline Affords Tryptathionine and 2,2'-bis-Indole Peptide Staples: Application to Melanotan-II. Chemistry 2024; 30:e202304270. [PMID: 38285527 DOI: 10.1002/chem.202304270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
With peptides increasingly favored as drugs, natural product motifs, namely the tryptathionine staple, found in amatoxins and phallotoxins, and the 2,2'-bis-indole found in staurosporine represent unexplored staples for unnatural peptide macrocycles. We disclose the efficient condensation of a 5-hydroxypyrroloindoline with either a cysteine-thiol or a tryptophan-indole to form a tryptathionine or 2-2'-bis-indole staple. Judicious use of protecting groups provides for chemoselective stapling using α-MSH, which provides a basis for investigating both chemoselectivity and affinity. Both classes of stapled peptides show nanomolar Ki's, with one showing a sub-nanomolar Ki value.
Collapse
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Antoine Blanc
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Zhou Wang
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Jerome Lozada
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Juliette Froelich
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Francois Benard
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| |
Collapse
|
5
|
Yao G, Kosol S, Wenz MT, Irran E, Keller BG, Trapp O, Süssmuth RD. The occurrence of ansamers in the synthesis of cyclic peptides. Nat Commun 2022; 13:6488. [PMID: 36310176 PMCID: PMC9618573 DOI: 10.1038/s41467-022-34125-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
α-Amanitin is a bicyclic octapeptide composed of a macrolactam with a tryptathionine cross-link forming a handle. Previously, the occurrence of isomers of amanitin, termed atropisomers has been postulated. Although the total synthesis of α-amanitin has been accomplished this aspect still remains unsolved. We perform the synthesis of amanitin analogs, accompanied by in-depth spectroscopic, crystallographic and molecular dynamics studies. The data unambiguously confirms the synthesis of two amatoxin-type isomers, for which we propose the term ansamers. The natural structure of the P-ansamer can be ansa-selectively synthesized using an optimized synthetic strategy. We believe that the here described terminology does also have implications for many other peptide structures, e.g. norbornapeptides, lasso peptides, tryptorubins and others, and helps to unambiguously describe conformational isomerism of cyclic peptides.
Collapse
Affiliation(s)
- Guiyang Yao
- grid.6734.60000 0001 2292 8254Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany ,grid.8547.e0000 0001 0125 2443Center for Innovative Drug Discovery, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai, PR China
| | - Simone Kosol
- grid.6734.60000 0001 2292 8254Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Marius T. Wenz
- grid.14095.390000 0000 9116 4836Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Elisabeth Irran
- grid.6734.60000 0001 2292 8254Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Bettina G. Keller
- grid.14095.390000 0000 9116 4836Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Oliver Trapp
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany ,grid.429508.20000 0004 0491 677XMax-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
| | - Roderich D. Süssmuth
- grid.6734.60000 0001 2292 8254Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany
| |
Collapse
|
6
|
Todorovic M, Rivollier P, Wong AAWL, Wang Z, Pryyma A, Nguyen TT, Newell KC, Froelich J, Perrin DM. Rationally Designed Amanitins Achieve Enhanced Cytotoxicity. J Med Chem 2022; 65:10357-10376. [PMID: 35696491 DOI: 10.1021/acs.jmedchem.1c02226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
For 70 years, α-amanitin, the most cytotoxic peptide in its class, has been without a synthetic rival; through synthesis, we address the structure-activity relationships to inform the design of new amatoxins and disclose analogues that are more cytotoxic than the natural product when evaluated on CHO, HEK293, and HeLa cells, whereas on liver-derived HepG2 cells, the same toxins show diminished cytotoxicity.
Collapse
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Paul Rivollier
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Antonio A W L Wong
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Zhou Wang
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Alla Pryyma
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Tuan Trung Nguyen
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Kayla C Newell
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - Juliette Froelich
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| | - David M Perrin
- Chemistry Department, 2036 Main Mall, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T-1Z1, Canada
| |
Collapse
|
7
|
White AM, Palombi IR, Malins LR. Umpolung strategies for the functionalization of peptides and proteins. Chem Sci 2022; 13:2809-2823. [PMID: 35382479 PMCID: PMC8905898 DOI: 10.1039/d1sc06133j] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023] Open
Abstract
Umpolung strategies, defined as synthetic approaches which reverse commonly accepted reactivity patterns, are broadly recognized as enabling tools for small molecule synthesis and catalysis. However, methods which exploit this logic for peptide and protein functionalizations are comparatively rare, with the overwhelming majority of existing bioconjugation approaches relying on the well-established reactivity profiles of a handful of amino acids. This perspective serves to highlight a small but growing body of recent work that masterfully capitalizes on the concept of polarity reversal for the selective modification of proteinogenic functionalities. Current applications of umpolung chemistry in organic synthesis and chemical biology as well as the vast potential for further innovations in peptide and protein modification will be discussed.
Collapse
Affiliation(s)
- Andrew M White
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| | - Isabella R Palombi
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
8
|
Kobayashi D, Kohmura Y, Hayashi J, Denda M, Tsuchiya K, Otaka A. Copper(II)-mediated C-H sulphenylation or selenylation of tryptophan enabling macrocyclization of peptides. Chem Commun (Camb) 2021; 57:10763-10766. [PMID: 34585682 DOI: 10.1039/d1cc04856b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cu(II)-mediated C-H sulphenylation or selenylation of Trp indole by a derivative of cysteine or selenocysteine enables access to the tryptathionine unit or its selenium congener. The mechanism of these protocols, which allow macrocyclization of Trp-containing peptides, has been studied.
Collapse
Affiliation(s)
- Daishiro Kobayashi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, 1-78-1, Tokushima 770-8505, Japan.
| | - Yutaka Kohmura
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, 1-78-1, Tokushima 770-8505, Japan.
| | - Junya Hayashi
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, 1-78-1, Tokushima 770-8505, Japan.
| | - Masaya Denda
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, 1-78-1, Tokushima 770-8505, Japan.
| | - Koichiro Tsuchiya
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, 1-78-1, Tokushima 770-8505, Japan.
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Sho-machi, 1-78-1, Tokushima 770-8505, Japan.
| |
Collapse
|