1
|
Anisimov MN, Boichenko MA, Shorokhov VV, Borzunova JN, Janibekova M, Mustyatsa VV, Lifshits IA, Plodukhin AY, Andreev IA, Ratmanova NK, Zhokhov SS, Tarasenko EA, Ipatova DA, Pisarev AR, Vorobjev IA, Trushkov IV, Ivanova OA, Gudimchuk NB. Synthesis and evaluation of tetrahydropyrrolo[1,2- a]quinolin-1(2 H)-ones as new tubulin polymerization inhibitors. RSC Med Chem 2024:d4md00541d. [PMID: 39464648 PMCID: PMC11499956 DOI: 10.1039/d4md00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Here we explored new 1,5-disubstituted pyrrolidin-2-ones 1, 2 and 5-aryl-3,3a,4,5-tetrahydropyrrolo[1,2-a]quinoline-1(2H)-ones 3 as inhibitors of tubulin polymerization. We evaluated their effects on microtubule dynamics in vitro and on the proliferation of A549 cells, using flow cytometry-based cell cycle analysis. The results were verified with phase-contrast microscopy in three cancer cell lines: A549, HeLa and MCF-7. Guided by molecular modeling of the interactions between tubulin and the most active of the identified compounds, we designed, synthesized, and tested the 3-hydroxyphenyl-substituted compound 3c. This compound was further shown to bind to the colchicine site of tubulin and reduce microtubule growth rates in vitro. Moreover, compound 3c arrested division of the A549 cells in the low micromolar range (IC50 = 5.9 μM) and exhibited cytotoxicity against four different cell lines in the MTT assay for cell proliferation. Our findings demonstrate that 5-aryltetrahydropyrrolo[1,2-a]quinoline-1(2H)-one is a promising scaffold for the development of novel tubulin polymerization inhibitors.
Collapse
Affiliation(s)
- Mikhail N Anisimov
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
| | - Maksim A Boichenko
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Vitaly V Shorokhov
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Julia N Borzunova
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | | | - Vadim V Mustyatsa
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
- National Laboratory Astana Astana 010000 Kazakhstan
| | - Ilya A Lifshits
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Andrey Yu Plodukhin
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Ivan A Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow 117997 Russia
| | - Nina K Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology Moscow 117997 Russia
| | - Sergey S Zhokhov
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Elena A Tarasenko
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Daria A Ipatova
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Alexander R Pisarev
- Faculty of Biology and Biotechnologies, Higher School of Economics Moscow 117418 Russia
| | - Ivan A Vorobjev
- National Laboratory Astana Astana 010000 Kazakhstan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University Astana 010000 Kazakhstan
- Department of Biology, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Igor V Trushkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Moscow 119991 Russia
| | - Olga A Ivanova
- Department of Chemistry, M.V. Lomonosov Moscow State University Moscow 119991 Russia
| | - Nikita B Gudimchuk
- Department of Physics, M.V. Lomonosov Moscow State University Moscow 119991 Russia
- Center for theoretical problems of physicochemical pharmacology Moscow 109029 Russia
| |
Collapse
|
2
|
Devaraj T, Srinivasan K. Ytterbium Triflate-Catalyzed Intramolecular Arylative Ring Opening of Arylaminomethyl-Substituted Donor-Acceptor Cyclopropanes: Access to Tetrahydroquinolines. J Org Chem 2024; 89:13886-13893. [PMID: 39303150 DOI: 10.1021/acs.joc.4c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The treatment of arylaminomethyl-substituted donor-acceptor cyclopropanes with a catalytic amount of Yb(OTf)3 provides expedient access to tetrahydroquinoline derivatives. The transformation proceeds through an intramolecular SN2-type attack of the aminomethyl-containing aryl ring on the cyclopropane ring, leading to the formation of the products as single diastereomers.
Collapse
Affiliation(s)
- Thangaraj Devaraj
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
3
|
Daniel FL, Srinivasan K. Intramolecular 1,2-Aroyl Migration in Spiro Donor-Acceptor Cyclopropanes: Formation of 1,4-Naphthoquinones and 1-Naphthols as Ring-Expansion Products. J Org Chem 2024; 89:5304-5313. [PMID: 38593430 DOI: 10.1021/acs.joc.3c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Most of the known rearrangement reactions of donor-acceptor cyclopropanes (DACs) involve the migration of cationic carbon atom to anionic carbon or heteroatoms in 1,3- or 1,4-positions. In the present work, we observed that spiro DACs based on 1,3-indanedione or 1-indanone moiety undergo intramolecular 1,2-aroyl migration when treated with titanium(IV) chloride to afford 1,4-naphthoquinones and α-naphthols readily. The reactions take place through the formation of putative 1,3-dipolar intermediates, followed by cleavage and migration of the aroyl group to the adjacent carbon to afford the ring-expansion products.
Collapse
Affiliation(s)
- Franklin Leslin Daniel
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| |
Collapse
|
4
|
Harikumar S, Kandy LTK, Guin A, Biju AT. Lewis acid-catalyzed one-pot thioalkenylation of donor-acceptor cyclopropanes using in situ generated dithiocarbamates and propiolates. Org Biomol Chem 2024; 22:1834-1838. [PMID: 38334700 DOI: 10.1039/d4ob00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Lewis acid-catalyzed one-pot 1,3-thioalkenylation of donor-acceptor (D-A) cyclopropanes has been demonstrated employing in situ generated dithiocarbamates (from amines and CS2) as nucleophilic triggers and alkyl propiolates as electrophiles. This method addresses the limitations of previously known carbothiolation approach, eliminating the need for extra filtration prior to the subsequent trapping with electrophiles. The anticipated thioalkenylated products were obtained in good to excellent yields with a moderate to good E/Z ratio. Three new bonds (C-N, C-S, and C-C) are formed during this 1,3-bisfunctionalization reaction. Notably, employing enantiomerically pure D-A cyclopropanes resulted in enantiopure 1,3-thioalkenylated products, underscoring the stereospecific nature of the developed reaction.
Collapse
Affiliation(s)
- Sanjeevni Harikumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Shorokhov VV, Zhokhov SS, Rybakov VB, Boichenko MA, Andreev IA, Ratmanova NK, Trushkov IV, Ivanova OA. Donor-Acceptor Cyclopropane Ring Expansion to 1,2-Dihydronaphthalenes. Access to Bridged Seven-Membered Lactones. Org Lett 2023; 25:7963-7967. [PMID: 37916763 DOI: 10.1021/acs.orglett.3c02846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A Lewis-acid-promoted domino ring-opening cyclization of readily available donor-acceptor cyclopropanes with a preinstalled electrophilic center, embedded in a donor group, to functionalized 1,2-dihydronaphthalenes is reported herein. The obtained compounds are transformed to pharmacologically attractive bridged tricyclic esters in a diastereospecific manner.
Collapse
Affiliation(s)
- Vitaly V Shorokhov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Sergey S Zhokhov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Victor B Rybakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Maksim A Boichenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Ivan A Andreev
- Laboratory of Chemical Synthesis, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Nina K Ratmanova
- Laboratory of Chemical Synthesis, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russia
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia
| | - Olga A Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| |
Collapse
|
6
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor-Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2023; 62:e202214390. [PMID: 36322458 PMCID: PMC10099577 DOI: 10.1002/anie.202214390] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 11/05/2022]
Abstract
A novel class of highly activated donor-acceptor cyclopropanes bearing only a single, vinylogous acceptor is presented. These strained moieties readily undergo cycloadditions with aldehydes, ketones, thioketones, nitriles, naphth-2-ols and various other substrates to yield the corresponding carbo- and heterocycles. Diastereocontrol can be achieved through the choice of catalyst (Brønsted or Lewis acid). The formation of tetrahydrofurans was shown to be highly enantiospecific when chiral cyclopropanes are employed. A series of mechanistic and kinetic experiments was conducted to elucidate a plausible catalytic cycle and to rationalize the stereochemical outcome.
Collapse
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Oliver Hergert
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität FreiburgInstitute of Organic ChemistryAlbertstraße 2179104Freiburg (Breisgau)Germany
| |
Collapse
|
7
|
Boichenko MA, Plodukhin AY, Shorokhov VV, Lebedev DS, Filippova AV, Zhokhov SS, Tarasenko EA, Rybakov VB, Trushkov IV, Ivanova OA. Synthesis of 1,5-Substituted Pyrrolidin-2-ones from Donor-Acceptor Cyclopropanes and Anilines/Benzylamines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238468. [PMID: 36500574 PMCID: PMC9735934 DOI: 10.3390/molecules27238468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
We developed a straightforward synthetic route to pharmacologically important 1,5-substituted pyrrolidin-2-ones from donor-acceptor cyclopropanes bearing an ester group as one of the acceptor substituents. This method includes a Lewis acid-catalyzed opening of the donor-acceptor cyclopropane with primary amines (anilines, benzylamines, etc.) to γ-amino esters, followed by in situ lactamization and dealkoxycarbonylation. The reaction has a broad scope of applicability; a variety of substituted anilines, benzylamines, and other primary amines as well as a wide range of donor-acceptor cyclopropanes bearing (hetero)aromatic or alkenyl donor groups and various acceptor substituents can be involved in this transformation. In this process, donor-acceptor cyclopropanes react as 1,4-C,C-dielectrophiles, and amines react as 1,1-dinucleophiles. The resulting di- and trisubstituted pyrrolidin-2-ones can be also used in subsequent chemistry to obtain various nitrogen-containing polycyclic compounds of interest to medicinal chemistry and pharmacology, such as benz[g]indolizidine derivatives.
Collapse
Affiliation(s)
- Maksim A. Boichenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Andrey Yu. Plodukhin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vitaly V. Shorokhov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Danyla S. Lebedev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Anastasya V. Filippova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Sergey S. Zhokhov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Elena A. Tarasenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Victor B. Rybakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Igor V. Trushkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky Pr. 47, 119334 Moscow, Russia
- Correspondence: (I.V.T.); (O.A.I.); Tel.: +7-916-645-9951 (I.V.T.)
| | - Olga A. Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
- Correspondence: (I.V.T.); (O.A.I.); Tel.: +7-916-645-9951 (I.V.T.)
| |
Collapse
|
8
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor‐Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Oliver Hergert
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität Freiburg Institute of Organic Chemistry Albertstraße 21 79104 Freiburg (Breisgau) Germany
| |
Collapse
|
9
|
Ring expansion of donor—acceptor cyclopropanes bearing arylcarbamoyl group into 1,5-diarylpyrrolidin-2-ones. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Vartanova AE, Levina II, Ratmanova NK, Andreev IA, Ivanova OA, Trushkov IV. Ambident reactivity of 5-aminopyrazoles towards donor-acceptor cyclopropanes. Org Biomol Chem 2022; 20:7795-7802. [PMID: 36148530 DOI: 10.1039/d2ob01490d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis acid-catalysed reactions of donor-acceptor cyclopropanes with 1,3-disubstituted 5-aminopyrazoles were investigated. Under catalysis with gallium(III) chloride, products of the three-membered ring opening via a nucleophilic attack of the exocyclic amino group were obtained in a chemoselective manner. Oppositely, in the presence of scandium(III) triflate, products of either N-alkylation or C(4)-alkylation, or a mixture of both were formed. The products of the C(4) alkylation were transformed in one step into tetrahydropyrazolo[3,4-b]azepines that are attractive for medicinal chemistry and pharmacology.
Collapse
Affiliation(s)
- Anna E Vartanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.
| | - Irina I Levina
- N. M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Nina K Ratmanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| | - Ivan A Andreev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| | - Olga A Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russian Federation
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.
| |
Collapse
|
11
|
Feng Z, Jiao H, Ye Z, Ye J, Xu ZF, Duan S, Li CY. Synthesis of Azepane Derivatives via Formal 1,3-Migration of Hydroxy and Acyloxy Groups and Selective Annulation. Org Lett 2022; 24:5254-5259. [PMID: 35852457 DOI: 10.1021/acs.orglett.2c01646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Formal 1,3-migration of hydroxy and acyloxy groups initiated by α-imino rhodium carbene was achieved, and the following selective annulations of the corresponding zwitterions could efficiently afford azepane derivatives. Benefiting from a time-saving procedure as well as a good functional group tolerance, this unique migration-annulation protocol could provide an efficient tool for synthesizing seven-membered N-heterocycles. The plausible mechanism is discussed.
Collapse
Affiliation(s)
- Zijuan Feng
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Hongjian Jiao
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Zihang Ye
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Jie Ye
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Ze-Feng Xu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Shengguo Duan
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| | - Chuan-Ying Li
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
12
|
Karjee P, Mishra M, Debnath B, Punniyamurthy T. Expedient Ni(OTf) 2/visible light photoredox-catalyzed annulation of donor-acceptor cyclopropanes with cyclic secondary amines. Chem Commun (Camb) 2022; 58:8670-8673. [PMID: 35822543 DOI: 10.1039/d2cc02941c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The annulative coupling of donor-acceptor cyclopropanes with cyclic secondary amines is reported using the combination of Ni(OTf)2 and visible light assisted eosin Y catalysis for tandem C-N and C-C bond formation. The reaction sequence provides a potential synthetic tool for the construction of pyrrolotetrahydroisoquinolines.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
13
|
Saito T, Shibata K, Takagi R, Shimizu Y, Takaki N, Nishii Y. Asymmetric Total Synthesis of a Bioactive Lignanamide Using a 5‐endo‐tet‐type Cyclization of Activated Cyclopropylcarbinols and Synthetic Support for the Reaction Mechanism. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Taichi Saito
- Shinshu University - Ueda Campus: Shinshu Daigaku - Ueda Campus Chemistry and materials JAPAN
| | - Kazuki Shibata
- Shinshu University - Ueda Campus: Shinshu Daigaku - Ueda Campus Chemistry and materials JAPAN
| | - Ryohei Takagi
- Shinshu University - Ueda Campus: Shinshu Daigaku - Ueda Campus Chemistry and materials JAPAN
| | - Yuka Shimizu
- Shinshu University - Ueda Campus: Shinshu Daigaku - Ueda Campus Chemistry and materials JAPAN
| | - Naoya Takaki
- Shinshu University - Ueda Campus: Shinshu Daigaku - Ueda Campus Chemistry and materials JAPAN
| | | |
Collapse
|
14
|
Andreev I, Boichenko M, Ratmanova N, Ivanova O, Levina I, Khrustalev V, Sedov I, Trushkov I. 4‐(Dimethylamino)pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ivan Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | - Maksim Boichenko
- Lomonosov Moscow State University Department of Chemistry RUSSIAN FEDERATION
| | - Nina Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | | | - Irina Levina
- FSBSI Institute of Biochemical Physics named after N M Emanuel of the Russian Academy of Sciences RUSSIAN FEDERATION
| | | | - Igor Sedov
- Kazan Federal University RUSSIAN FEDERATION
| | - Igor Trushkov
- N.D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| |
Collapse
|
15
|
Dutta HS, Ahmad A, Khan AA, Kumar M, Raziullah, Vaishnav J, Gangwar M, Ampapathi RS, Koley D. Diastereoselective [3 + 2] Cycloaddition of Quinoxalin-2(1 H)-ones with Donor-Acceptor Cyclopropanes: Efficient Synthesis of Tetrahydro pyrrolo[1,2- a]quinoxalin-4(5 H)-ones. J Org Chem 2021; 86:16558-16572. [PMID: 34780178 DOI: 10.1021/acs.joc.1c01872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A ytterbium triflate-catalyzed diastereoselective [3 + 2] cycloaddition of quinoxalinones with donor-acceptor cyclopropanes and cyclobutanes is described. A series of tetrahydropyrrolo-quinoxalinone derivatives were obtained in high yields (up to 96%) with excellent diastereoselectivities (up to 46:1). Other medicinally important heterocycles like benzoxazinone, isoquinoxalinone, and dibenzoxazepine derivatives were also suitable for the desired annulation reaction. The current method is applicable for the scale-up reaction. Further, the utility of this annulation reaction is demonstrated by the synthesis of densely functionalized proline derivatives.
Collapse
Affiliation(s)
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Afsar Ali Khan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohit Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jayanti Vaishnav
- SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Gangwar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom Of Saudi Arabia
| | | | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Xie X, Sun J. [4+3]-Cycloaddition Reaction of Sulfilimines with Cyclobutenones: Access to Benzazepinones. Org Lett 2021; 23:8921-8925. [PMID: 34723560 DOI: 10.1021/acs.orglett.1c03413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A catalyst-free [4+3]-cycloaddition reaction of N-aryl sulfilimines with cyclobutenones is described, which provides a straightforward protocol for synthesizing 1,5-dihydro-2H-benzo[b]azepin-2-ones under mild reaction conditions. This reaction features a broad substrate scope and good functional group tolerance and does not require catalysts or additives. Moreover, using N-pyridinyl sulfilimine as the substrate, a series of pyridoazepinones have also been prepared.
Collapse
Affiliation(s)
- Xiaozhou Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
17
|
Sarmah BK, Konwar M, Das A. Copper-Catalyzed Oxidative Dehydrogenative Reaction of Quinoline- N-Oxides with Donor-Acceptor Cyclopropanes: Installation of a Tertiary Alkyl Motif at C2 Position. Org Lett 2021; 23:8390-8395. [PMID: 34633204 DOI: 10.1021/acs.orglett.1c03115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed oxidative dehydrogenative reaction of quinoline N-oxides with donor-acceptor cyclopropanes has been demonstrated to construct C2-alkylated quinolines containing a γ-keto diester motif. The use of molecular oxygen as an oxidant, excellent site-selectivity, and good functional group tolerance are the important features in this process. The preliminary mechanistic studies demonstrate that the catalyst plays a dual role as a Lewis acid and a redox catalyst.
Collapse
Affiliation(s)
- Bikash Kumar Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Monuranjan Konwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|