• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4636010)   Today's Articles (293)   Subscriber (50080)
For: Yan Y, Robinson SG, Vaid TP, Sigman MS, Sanford MS. Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents. J Am Chem Soc 2021;143:13450-13459. [PMID: 34387084 DOI: 10.1021/jacs.1c07237] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Number Cited by Other Article(s)
1
Tracy J, Broderick CH, Toste FD. Development of the Squaramide Scaffold for High Potential and Multielectron Catholytes for Use in Redox Flow Batteries. J Am Chem Soc 2024;146:11740-11755. [PMID: 38629752 PMCID: PMC11066874 DOI: 10.1021/jacs.3c14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
2
Go CY, Shin J, Choi MK, Jung IH, Kim KC. Switchable Design of Redox-Enhanced Nonaromatic Quinones Enabled by Conjugation Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2311155. [PMID: 38117071 DOI: 10.1002/adma.202311155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Indexed: 12/21/2023]
3
Pancoast AR, McCormack SL, Galinat S, Walser-Kuntz R, Jett BM, Sanford MS, Sigman MS. Data science enabled discovery of a highly soluble 2,2'-bipyrimidine anolyte for application in a flow battery. Chem Sci 2023;14:13734-13742. [PMID: 38075655 PMCID: PMC10699568 DOI: 10.1039/d3sc04084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024]  Open
4
Jesse KA, Abad SD, Studvick C, Andrade GA, Maurya S, Scott BL, Mukundan R, Popov IA, Davis BL. Impact of Pendent Ammonium Groups on Solubility and Cycling Charge Carrier Performance in Nonaqueous Redox Flow Batteries. Inorg Chem 2023;62:19218-19229. [PMID: 37948607 DOI: 10.1021/acs.inorgchem.3c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
5
Jett B, Flynn A, Sigman MS, Sanford MS. Identifying structure-function relationships to modulate crossover in nonaqueous redox flow batteries. JOURNAL OF MATERIALS CHEMISTRY. A 2023;11:22288-22294. [PMID: 38213509 PMCID: PMC10783818 DOI: 10.1039/d3ta02633g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
6
Zhang W, Walser-Kuntz R, Tracy JS, Schramm TK, Shee J, Head-Gordon M, Chen G, Helms BA, Sanford MS, Toste FD. Indolo[2,3-b]quinoxaline as a Low Reduction Potential and High Stability Anolyte Scaffold for Nonaqueous Redox Flow Batteries. J Am Chem Soc 2023;145:18877-18887. [PMID: 37585274 PMCID: PMC10472437 DOI: 10.1021/jacs.3c05210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 08/18/2023]
7
Mandal D, Qu ZW, Grimme S, Stephan DW. Electron-deficient cyclopropenium cations as Lewis acids in FLP chemistry. Chem Commun (Camb) 2023;59:10508-10511. [PMID: 37564033 DOI: 10.1039/d3cc02684a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
8
Gautam RK, Wang X, Lashgari A, Sinha S, McGrath J, Siwakoti R, Jiang JJ. Development of high-voltage and high-energy membrane-free nonaqueous lithium-based organic redox flow batteries. Nat Commun 2023;14:4753. [PMID: 37553368 PMCID: PMC10409715 DOI: 10.1038/s41467-023-40374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 07/24/2023] [Indexed: 08/10/2023]  Open
9
Walser-Kuntz R, Yan Y, Sigman M, Sanford MS. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries. Acc Chem Res 2023;56:1239-1250. [PMID: 37094181 DOI: 10.1021/acs.accounts.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
10
de la Cruz C, Sanz R, Suárez A, Ventosa E, Marcilla R, Mavrandonakis A. A Systematic Study on the Redox Potentials of Phenazine-Derivatives in Aqueous Media: A Combined Computational and Experimental Work. CHEMSUSCHEM 2023;16:e202201984. [PMID: 36753400 DOI: 10.1002/cssc.202201984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/30/2023] [Indexed: 06/18/2023]
11
Jana S, Elvers BJ, Pätsch S, Sarkar P, Krummenacher I, Nayak MK, Maiti A, Chrysochos N, Pati SK, Schulzke C, Braunschweig H, Yildiz CB, Jana A. Air and Moisture Stable para- and ortho-Quinodimethane Derivatives Derived from bis-N-Heterocyclic Olefins. Org Lett 2023;25:1799-1804. [PMID: 36662600 DOI: 10.1021/acs.orglett.2c03993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
12
Zhang W, Yang X, Zhang S. Gaseous Nitrogen Oxides Catholyte for Rechargeable Redox Flow Batteries. Angew Chem Int Ed Engl 2023;62:e202216889. [PMID: 36592132 DOI: 10.1002/anie.202216889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/03/2023]
13
Pence M, Rodríguez O, Lukhanin NG, Schroeder CM, Rodríguez-López J. Automated Measurement of Electrogenerated Redox Species Degradation Using Multiplexed Interdigitated Electrode Arrays. ACS MEASUREMENT SCIENCE AU 2023;3:62-72. [PMID: 36817007 PMCID: PMC9936799 DOI: 10.1021/acsmeasuresciau.2c00054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/18/2023]
14
Yan Y, Sitaula P, Odom SA, Vaid TP. High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2022;14:49633-49640. [PMID: 36315441 DOI: 10.1021/acsami.2c10072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
15
Tracy JS, Horst ES, Roytman VA, Toste FD. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures. Chem Sci 2022;13:10806-10814. [PMID: 36320695 PMCID: PMC9491095 DOI: 10.1039/d2sc03450f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022]  Open
16
Xu D, Zhang C, Li Y. Molecular engineering redox-active organic materials for nonaqueous redox flow battery. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
S. V. SS, Law JN, Tripp CE, Duplyakin D, Skordilis E, Biagioni D, Paton RS, St. John PC. Multi-objective goal-directed optimization of de novo stable organic radicals for aqueous redox flow batteries. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00506-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
18
Bheemireddy SR, Li Z, Zhang J, Agarwal G, Robertson LA, Shkrob IA, Assary RS, Zhang Z, Wei X, Cheng L, Zhang L. Fluorination Enables Simultaneous Improvements of a Dialkoxybenzene-Based Redoxmer for Nonaqueous Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2022;14:28834-28841. [PMID: 35709493 DOI: 10.1021/acsami.2c04926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
19
Quan Q, Zhao Y, Chen K, Zhou H, Zhou C, Chen M. Organocatalyzed Controlled Copolymerization of Perfluorinated Vinyl Ethers and Unconjugated Monomers Driven by Light. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA