1
|
Eckardt NA, Allahverdiyeva Y, Alvarez CE, Büchel C, Burlacot A, Cardona T, Chaloner E, Engel BD, Grossman AR, Harris D, Herrmann N, Hodges M, Kern J, Kim TD, Maurino VG, Mullineaux CW, Mustila H, Nikkanen L, Schlau-Cohen G, Tronconi MA, Wietrzynski W, Yachandra VK, Yano J. Lighting the way: Compelling open questions in photosynthesis research. THE PLANT CELL 2024; 36:3914-3943. [PMID: 39038210 PMCID: PMC11449116 DOI: 10.1093/plcell/koae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
Collapse
Affiliation(s)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adrien Burlacot
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Emma Chaloner
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Sptialstrasse 41, 4056 Basel, Switzerland
| | - Arthur R Grossman
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nicolas Herrmann
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Dongmin Kim
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Henna Mustila
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lauri Nikkanen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Gabriela Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | | | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Sohoni S, Ghosh I, Nash GT, Jones CA, Lloyd LT, Li BC, Ji KL, Wang Z, Lin W, Engel GS. Optically accessible long-lived electronic biexcitons at room temperature in strongly coupled H- aggregates. Nat Commun 2024; 15:8280. [PMID: 39333466 PMCID: PMC11437198 DOI: 10.1038/s41467-024-52341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
Photon absorption is the first process in light harvesting. Upon absorption, the photon redistributes electrons in the materials to create a Coulombically bound electron-hole pair called an exciton. The exciton subsequently separates into free charges to conclude light harvesting. When two excitons are in each other's proximity, they can interact and undergo a two-particle process called exciton-exciton annihilation. In this process, one electron-hole pair spontaneously recombines: its energy is lost and cannot be harnessed for applications. In this work, we demonstrate the creation of two long-lived excitons on the same chromophore site (biexcitons) at room temperature in a strongly coupled H-aggregated zinc phthalocyanine material. We show that exciton-exciton annihilation is suppressed in these H- aggregated chromophores at fluences many orders of magnitudes higher than solar light. When we chemically connect the same aggregated chromophores to allow exciton diffusion, we observe that exciton-exciton annihilation is switched on. Our findings demonstrate a chemical strategy, to toggle on and off the exciton-exciton annihilation process that limits the dynamic range of photovoltaic devices.
Collapse
Affiliation(s)
- Siddhartha Sohoni
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Indranil Ghosh
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Geoffrey T Nash
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Claire A Jones
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Lawson T Lloyd
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Beiye C Li
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Karen L Ji
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Gregory S Engel
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Zheng M, Pang X, Chen M, Tian L. Ultrafast energy quenching mechanism of LHCSR3-dependent photoprotection in Chlamydomonas. Nat Commun 2024; 15:4437. [PMID: 38789432 PMCID: PMC11126702 DOI: 10.1038/s41467-024-48789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Qy to a carotenoid (car) S1 state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojie Pang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Sayer T, Montoya-Castillo A. Efficient formulation of multitime generalized quantum master equations: Taming the cost of simulating 2D spectra. J Chem Phys 2024; 160:044108. [PMID: 38270238 DOI: 10.1063/5.0185578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Modern 4-wave mixing spectroscopies are expensive to obtain experimentally and computationally. In certain cases, the unfavorable scaling of quantum dynamics problems can be improved using a generalized quantum master equation (GQME) approach. However, the inclusion of multiple (light-matter) interactions complicates the equation of motion and leads to seemingly unavoidable cubic scaling in time. In this paper, we present a formulation that greatly simplifies and reduces the computational cost of previous work that extended the GQME framework to treat arbitrary numbers of quantum measurements. Specifically, we remove the time derivatives of quantum correlation functions from the modified Mori-Nakajima-Zwanzig framework by switching to a discrete-convolution implementation inspired by the transfer tensor approach. We then demonstrate the method's capabilities by simulating 2D electronic spectra for the excitation-energy-transfer dimer model. In our method, the resolution of data can be arbitrarily coarsened, especially along the t2 axis, which mirrors how the data are obtained experimentally. Even in a modest case, this demands O(103) fewer data points. We are further able to decompose the spectra into one-, two-, and three-time correlations, showing how and when the system enters a Markovian regime where further measurements are unnecessary to predict future spectra and the scaling becomes quadratic. This offers the ability to generate long-time spectra using only short-time data, enabling access to timescales previously beyond the reach of standard methodologies.
Collapse
Affiliation(s)
- Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
5
|
Gray C, Kailas L, Adams PG, Duffy CDP. Unravelling the fluorescence kinetics of light-harvesting proteins with simulated measurements. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149004. [PMID: 37699505 DOI: 10.1016/j.bbabio.2023.149004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
The plant light-harvesting pigment-protein complex LHCII is the major antenna sub-unit of PSII and is generally (though not universally) accepted to play a role in photoprotective energy dissipation under high light conditions, a process known Non-Photochemical Quenching (NPQ). The underlying mechanisms of energy trapping and dissipation within LHCII are still debated. Various models have been proposed for the underlying molecular detail of NPQ, but they are often based on different interpretations of very similar transient absorption measurements of isolated complexes. Here we present a simulated measurement of the fluorescence decay kinetics of quenched LHCII aggregates to determine whether this relatively simple measurement can discriminate between different potential NPQ mechanisms. We simulate not just the underlying physics (excitation, energy migration, quenching and singlet-singlet annihilation) but also the signal detection and typical experimental data analysis. Comparing this to a selection of published fluorescence decay kinetics we find that: (1) Different proposed quenching mechanisms produce noticeably different fluorescence kinetics even at low (annihilation free) excitation density, though the degree of difference is dependent on pulse width. (2) Measured decay kinetics are consistent with most LHCII trimers becoming relatively slow excitation quenchers. A small sub-population of very fast quenchers produces kinetics which do not resemble any observed measurement. (3) It is necessary to consider at least two distinct quenching mechanisms in order to accurately reproduce experimental kinetics, supporting the idea that NPQ is not a simple binary switch.
Collapse
Affiliation(s)
- Callum Gray
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End, London E1 4NS, United Kingdom
| | - Lekshmi Kailas
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter G Adams
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Christopher D P Duffy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End, London E1 4NS, United Kingdom.
| |
Collapse
|
6
|
Manna P, Hoffmann M, Davies T, Richardson KH, Johnson MP, Schlau-Cohen GS. Energetic driving force for LHCII clustering in plant membranes. SCIENCE ADVANCES 2023; 9:eadj0807. [PMID: 38134273 PMCID: PMC10745693 DOI: 10.1126/sciadv.adj0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Plants capture and convert solar energy in a complex network of membrane proteins. Under high light, the luminal pH drops and induces a reorganization of the protein network, particularly clustering of the major light-harvesting complex (LHCII). While the structures of the network have been resolved in exquisite detail, the thermodynamics that control the assembly and reorganization had not been determined, largely because the interaction energies of membrane proteins have been inaccessible. Here, we describe a method to quantify these energies and its application to LHCII. Using single-molecule measurements, LHCII proteoliposomes, and statistical thermodynamic modeling, we quantified the LHCII-LHCII interaction energy as ~-5 kBT at neutral pH and at least -7 kBT at acidic pH. These values revealed an enthalpic thermodynamic driving force behind LHCII clustering. Collectively, this work captures the interactions that drive the organization of membrane protein networks from the perspective of equilibrium statistical thermodynamics, which has a long and rich tradition in biology.
Collapse
Affiliation(s)
- Premashis Manna
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Madeline Hoffmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas Davies
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | - Matthew P. Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
7
|
Li DH, Wilson S, Mastroianni G, Ruban AV. Altered lipid acyl chain length controls energy dissipation in light-harvesting complex II proteoliposomes by hydrophobic mismatch. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 246:112758. [PMID: 37531665 DOI: 10.1016/j.jphotobiol.2023.112758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
In plants, the major light-harvesting antenna complex (LHCII) is vital for both light harvesting and photoprotection in photosystem II. Previously, we proposed that the thylakoid membrane itself could switch LHCII into the photoprotective state, qE, via a process known as hydrophobic mismatch. The decrease in the membrane thickness that followed the formation of ΔpH was a key fact that prompted this idea. To test this, we made proteoliposomes from lipids with altered acyl chain length (ACL). Here, we show that ACL regulates the average chlorophyll fluorescence lifetime of LHCII. For liposomes made of lipids with an ACL of 18 carbons, the lifetime was ∼2 ns, like that for the thylakoid membrane. Furthermore, LHCII appears to be quenched in proteoliposomes with an ACL both shorter and longer than 18 carbons. The proteoliposomes made of short ACL lipids display structural heterogeneity revealing two quenched conformations of LHCII, each having characteristic 77 K fluorescence spectra. One conformation spectrally resembles isolated LHCII aggregates, whilst the other resembles LHCII immobilized in polyacrylamide gels. Overall, the decrease in the ACL appears to produce quenched conformations of LHCII, which renders plausible the idea that the trigger of qE is the hydrophobic mismatch.
Collapse
Affiliation(s)
- Dan-Hong Li
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| | - Sam Wilson
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| | - Giulia Mastroianni
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| | - Alexander V Ruban
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
| |
Collapse
|
8
|
Harris D, Toporik H, Schlau-Cohen GS, Mazor Y. Energetic robustness to large scale structural fluctuations in a photosynthetic supercomplex. Nat Commun 2023; 14:4650. [PMID: 37532717 PMCID: PMC10397321 DOI: 10.1038/s41467-023-40146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Photosynthetic organisms transport and convert solar energy with near-unity quantum efficiency using large protein supercomplexes held in flexible membranes. The individual proteins position chlorophylls to tight tolerances considered critical for fast and efficient energy transfer. The variability in protein organization within the supercomplexes, and how efficiency is maintained despite variability, had been unresolved. Here, we report on structural heterogeneity in the 2-MDa cyanobacterial PSI-IsiA photosynthetic supercomplex observed using Cryo-EM, revealing large-scale variances in the positions of IsiA relative to PSI. Single-molecule measurements found efficient IsiA-to-PSI energy transfer across all conformations, along with signatures of transiently decoupled IsiA. Structure based calculations showed that rapid IsiA-to-PSI energy transfer is always maintained, and even increases by three-fold in rare conformations via IsiA-specific chls. We postulate that antennae design mitigates structural fluctuations, providing a mechanism for robust energy transfer in the flexible membrane.
Collapse
Affiliation(s)
- Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Hila Toporik
- Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85801, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Yuval Mazor
- Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85801, USA.
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
9
|
Wang D, Fiebig OC, Harris D, Toporik H, Ji Y, Chuang C, Nairat M, Tong AL, Ogren JI, Hart SM, Cao J, Sturgis JN, Mazor Y, Schlau-Cohen GS. Elucidating interprotein energy transfer dynamics within the antenna network from purple bacteria. Proc Natl Acad Sci U S A 2023; 120:e2220477120. [PMID: 37399405 PMCID: PMC10334754 DOI: 10.1073/pnas.2220477120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/21/2023] [Indexed: 07/05/2023] Open
Abstract
In photosynthesis, absorbed light energy transfers through a network of antenna proteins with near-unity quantum efficiency to reach the reaction center, which initiates the downstream biochemical reactions. While the energy transfer dynamics within individual antenna proteins have been extensively studied over the past decades, the dynamics between the proteins are poorly understood due to the heterogeneous organization of the network. Previously reported timescales averaged over such heterogeneity, obscuring individual interprotein energy transfer steps. Here, we isolated and interrogated interprotein energy transfer by embedding two variants of the primary antenna protein from purple bacteria, light-harvesting complex 2 (LH2), together into a near-native membrane disc, known as a nanodisc. We integrated ultrafast transient absorption spectroscopy, quantum dynamics simulations, and cryogenic electron microscopy to determine interprotein energy transfer timescales. By varying the diameter of the nanodiscs, we replicated a range of distances between the proteins. The closest distance possible between neighboring LH2, which is the most common in native membranes, is 25 Å and resulted in a timescale of 5.7 ps. Larger distances of 28 to 31 Å resulted in timescales of 10 to 14 ps. Corresponding simulations showed that the fast energy transfer steps between closely spaced LH2 increase transport distances by ∼15%. Overall, our results introduce a framework for well-controlled studies of interprotein energy transfer dynamics and suggest that protein pairs serve as the primary pathway for the efficient transport of solar energy.
Collapse
Affiliation(s)
- Dihao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Olivia C. Fiebig
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Hila Toporik
- School of Molecular Sciences, Arizona State University, Tempe, AZ85281
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ85281
| | - Yi Ji
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Chern Chuang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Muath Nairat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ashley L. Tong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - John I. Ogren
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - James N. Sturgis
- LISM UMR 7255, CNRS and Aix-Marseille University, Marseille Cedex 913402, France
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State University, Tempe, AZ85281
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ85281
| | | |
Collapse
|
10
|
Thi Huong Giang N, Tan Thinh N, Duy Hai N, Tan Loc P, Ngoc Anh Thu T, Hong Phi Loan N, Minh Quang D, Duc Anh L, Nguyen Thien Truong An V, Thanh Phong M, Huu Hieu N. Application of TiO2 nanoparticles with natural chlorophyll as the catalyst for visible light photocatalytic degradation of methyl orange and antibacterial. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Li W, Li J, Wei J, Niu C, Yang D, Jiang B. Response of photosynthesis, the xanthophyll cycle, and wax in Japanese yew ( Taxus cuspidata L.) seedlings and saplings under high light conditions. PeerJ 2023; 11:e14757. [PMID: 36718441 PMCID: PMC9884039 DOI: 10.7717/peerj.14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023] Open
Abstract
In order to understand the adaptative changes of the Japanese yew (Taxus cuspidate L.) to high light conditions, this study investigated gas-exchange, chlorophyll fluorescence, chlorophyll, and the impact of epicuticular wax on the gas-exchange and photoinhibition of Japanese yew seedlings and saplings. The chlorophyll content per unit area and photosynthetic rate in seedling leaves were significantly lower than in sapling leaves. When leaves from seedlings and saplings were exposed to 1,200 μmol·m-2·s-1 photon flux density (PFD) for 2 h, seedling leaves exhibited a greater down-regulation of maximum quantum yield (Fv/Fm) and actual photosystem II efficiency ( Φ PSII). Non-photochemical quenching (NPQ) and high energy quenching (qE) in sapling leaves were much higher than in seedling leaves when both were exposed to 1,200 μmol·m-2·s-1 PFD for 2 h. At a low level of O2, the photorespiration rate (Pr) and the ratio of photorespiration/gross photosynthetic rate (Pr/Pg) in seedling leaves were lower than in sapling leaves when both were exposed to 1,200 μmol·m-2·s-1 PFD, but this difference did not reach statistical significance (P < 0.05). Compared with sapling leaves, seedling leaves exhibited lower levels of xanthophyll pool. Epicuticular wax content on seedling leaves was significantly lower than on sapling leaves. The results of this study showed that wax coverage on the leaf surface decreased the photosynthetic rate in sapling leaves as a consequence of decreased stomatal conductance. Epicuticular wax is related to tree age and photoinhibition prevention in the Japanese yew. It is possible that lower photosynthetic rate, lower NPQ depending on the xanthophyll cycle, and lower deposition of epicuticular wax results in seedling plants that are not adapted to high light conditions.
Collapse
Affiliation(s)
- Wei Li
- Northeast Agricultural University, College of Resources and Environment, Harbin, Heilongjiang, China,Northeast Agricultural University, College of Agriculture, Harbin, Heilongjiang, China
| | - Jiacheng Li
- Northeast Agricultural University, College of Horticulture and Landscape Architecture, Harbin, Heilongjiang, China
| | - Jia Wei
- Northeast Agricultural University, College of Horticulture and Landscape Architecture, Harbin, Heilongjiang, China
| | - Chunda Niu
- Northeast Agricultural University, College of Resources and Environment, Harbin, Heilongjiang, China
| | - Deguang Yang
- Northeast Agricultural University, College of Agriculture, Harbin, Heilongjiang, China
| | - Baiwen Jiang
- Northeast Agricultural University, College of Resources and Environment, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Hou X, Hu X. Self-Assembled Nanoscale Manganese Oxides Enhance Carbon Capture by Diatoms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17215-17226. [PMID: 36375171 DOI: 10.1021/acs.est.2c04500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Continuous CO2 emissions from human activities increase atmospheric CO2 concentrations and affect global climate change. The carbon storage capacity of the ocean is 20-fold higher than that of the land, and diatoms contribute to approximately 40% of carbon capture in the ocean. Manganese (Mn) is a major driver of marine phytoplankton growth and the marine carbon pump. Here, we discovered self-assembled manganese oxides (MnOx) for CO2 fixation in a diatom-based biohybrid system. MnOx shared key features (e.g., di-μ-oxo-bridged Mn-Mn) with the Mn4CaO5 cluster of the biological catalyst in photosystem II and promoted photosynthesis and carbon capture by diatoms/MnOx. The CO2 capture capacity of diatoms/MnOx was 1.5-fold higher than that of diatoms alone. Diatoms/MnOx easily allocated carbon into proteins and lipids instead of carbohydrates. Metabolomics showed that the contents of several metabolites (e.g., lysine and inositol) were positively associated with increased CO2 capture. Diatoms/MnOx upregulated six genes encoding photosynthesis core proteins and a key rate-limiting enzyme (Rubisco, ribulose 1,5-bisphosphate carboxylase-oxygenase) in the Calvin-Benson-Bassham carbon assimilation cycle, revealing the link between MnOx and photosynthesis. These findings provide a route for offsetting anthropogenic CO2 emissions and inspiration for self-assembled biohybrid systems for carbon capture by marine phytoplankton.
Collapse
Affiliation(s)
- Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| |
Collapse
|
13
|
Kim E, Kubota-Kawai H, Kawai F, Yokono M, Minagawa J. Conformation of Light-Harvesting Complex II Trimer Depends upon Its Binding Site. J Phys Chem B 2022; 126:5855-5865. [PMID: 35920883 DOI: 10.1021/acs.jpcb.2c04061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The light-harvesting complex II (LHCII) trimer in plants functions as a major antenna complex and a quencher to protect it from photooxidative damage. Theoretical studies on the structure of an LHCII trimer have demonstrated that excitation energy transfer between chlorophylls (Chls) in LHCII can be modulated by its exquisite conformational fluctuation. However, conformational changes depending on its binding location have not yet been investigated, even though reorganization of protein complexes occurs by physiological regulations. In this study, we investigated conformational differences in LHCII by comparing published structures of an identical LHCII trimer in the three different photosystem supercomplexes from the green alga Chlamydomonas reinhardtii. Our results revealed distinct differences in Chl configurations as well as polypeptide conformations of the LHCII trimers depending on its binding location. We propose that these configurational differences readily modulate the function of LHCII and possibly lead to a change in excitation-energy flow over the photosynthetic supercomplex.
Collapse
Affiliation(s)
- Eunchul Kim
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | | | - Fumihiro Kawai
- Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Makio Yokono
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan.,Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
14
|
Sardar S, Caferri R, Camargo FVA, Pamos Serrano J, Ghezzi A, Capaldi S, Dall’Osto L, Bassi R, D’Andrea C, Cerullo G. Molecular mechanisms of light harvesting in the minor antenna CP29 in near-native membrane lipidic environment. J Chem Phys 2022; 156:205101. [DOI: 10.1063/5.0087898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CP29, a chlorophyll a/ b-xanthophyll binding protein, bridges energy transfer between the major LHCII antenna complexes and photosystem II reaction centers. It hosts one of the two identified quenching sites, making it crucial for regulated photoprotection mechanisms. Until now, the photophysics of CP29 has been studied on the purified protein in detergent solutions since spectrally overlapping signals affect in vivo measurements. However, the protein in detergent assumes non-native conformations compared to its physiological state in the thylakoid membrane. Here, we report a detailed photophysical study on CP29 inserted in discoidal lipid bilayers, known as nanodiscs, which mimic the native membrane environment. Using picosecond time-resolved fluorescence and femtosecond transient absorption (TA), we observed shortening of the Chl fluorescence lifetime with a decrease of the carotenoid triplet formation yield for CP29 in nanodiscs as compared to the protein in detergent. Global analysis of TA data suggests a 1Chl* quenching mechanism dependent on excitation energy transfer to a carotenoid dark state, likely the proposed S*, which is believed to be formed due to a carotenoid conformational change affecting the S1 state. We suggest that the accessibility of the S* state in different local environments plays a key role in determining the quenching of Chl excited states. In vivo, non-photochemical quenching is activated by de-epoxidation of violaxanthin into zeaxanthin. CP29-zeaxanthin in nanodiscs further shortens the Chl lifetime, which underlines the critical role of zeaxanthin in modulating photoprotection activity.
Collapse
Affiliation(s)
- Samim Sardar
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
| | - Roberto Caferri
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Franco V. A. Camargo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Javier Pamos Serrano
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Alberto Ghezzi
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Stefano Capaldi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Cosimo D’Andrea
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, 20133 Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
15
|
Do TN, Nguyen HL, Akhtar P, Zhong K, Jansen TLC, Knoester J, Caffarri S, Lambrev PH, Tan HS. Ultrafast Excitation Energy Transfer Dynamics in the LHCII-CP29-CP24 Subdomain of Plant Photosystem II. J Phys Chem Lett 2022; 13:4263-4271. [PMID: 35522529 DOI: 10.1021/acs.jpclett.2c00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We measure the two-dimensional electronic spectra of the LHCII(M)-CP29-CP24 complex in photosystem II (PSII) and provide the first study of the ultrafast excitation energy transfer (EET) processes of an asymmetric and native light-harvesting assembly of the antenna of PSII. With comparisons to LHCII, we observe faster energy equilibrations in the intermediate levels of the LHCII(M)-CP29-CP24 complex at 662 and 670 nm. Notably, the putative "bottleneck" states in LHCII exhibit faster effective dynamics in the LHCII(M)-CP24-CP29 complex, with the average lifetime shortening from 2.5 ps in LHCII to 1.2 ps in the bigger assembly. The observations are supported by high-level structure-based calculations, and the accelerated dynamics can be attributed to the structural change of LHCII(M) in the bigger complex. This study shows that the biological functioning structures of the complexes are important to understand the overall EET dynamics of the PSII supercomplex.
Collapse
Affiliation(s)
- Thanh Nhut Do
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hoang Long Nguyen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Parveen Akhtar
- Biological Research Center, Szeged, Temesvári körút 62, Szeged 6726, Hungary
- ELI-ALPS, ELI-HU Nonprofit Limited, Wolfgang Sandner utca 3, Szeged 6728, Hungary
| | - Kai Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Jasper Knoester
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Stefano Caffarri
- Aix Marseille Université, CEA, CNRS, BIAM, LGBP, 13009 Marseille, France
| | - Petar H Lambrev
- Biological Research Center, Szeged, Temesvári körút 62, Szeged 6726, Hungary
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
16
|
Zhang Y, Qi CH, Yamano N, Wang P, Yu LJ, Wang-Otomo ZY, Zhang JP. Carotenoid Single-Molecular Singlet Fission and the Photoprotection of a Bacteriochlorophyll b-Type Core Light-Harvesting Antenna. J Phys Chem Lett 2022; 13:3534-3541. [PMID: 35420425 DOI: 10.1021/acs.jpclett.2c00519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carotenoid (Car) in photosynthesis plays the major roles of accessary light harvesting and photoprotection, and the underlying structure-function relationship attracts continuing research interests. We have attempted to explore the dynamics of Car triplet excitation (3Car*) in the bacteriochlorophyll b (BChl b)-type light harvesting reaction center complex (LH1-RC) of photosynthetic bacterium Halorhodospira halochloris. We show that the LH1 antenna binds a single Car that was identified as a lycopene derivative. Although the Car is hardly visible in the LH1-RC stationary absorption, it shows up conspicuously in the triplet excitation profile with distinct vibronic features. This and the ultrafast formation of 3Car* on direct photoexcitation of Car unequivocally manifest the unimolecular singlet fission reaction of the Car. Moreover, the Car with even one molecule per complex is found to be rather effective in quenching 3BChl b*. The implications of different 3Car* formation mechanisms are discussed, and the self-photoprotection role of BChl b are proposed for this extremophilic species.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | | | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 1000872, P. R. China
| |
Collapse
|
17
|
Photoprotective conformational dynamics of photosynthetic light-harvesting proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148543. [PMID: 35202576 DOI: 10.1016/j.bbabio.2022.148543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Under high light conditions, excess energy can damage the machinery of oxygenic photosynthesis. Plants have evolved a series of photoprotective processes, including conformational changes of the light-harvesting complexes that activate dissipation of energy as heat. In this mini-review, we will summarize our recent work developing and applying single-molecule methods to investigate the conformational states of the light-harvesting complexes. Through these measurements, we identified dissipative conformations and how they depend on conditions that mimic high light. Our studies revealed an equilibrium between the light-harvesting and dissipative conformations, and that the nature of the equilibrium varies with cellular environment, between proteins, and between species. Finally, we conclude with an outlook on open questions and implications for photosynthetic yields.
Collapse
|