1
|
Wang J, Marks JH, Batrakova EA, Tuchin SO, Antonov IO, Kaiser RI. Formation of methylglyoxal (CH 3C(O)CHO) in interstellar analog ices - a key intermediate in cellular metabolism. Phys Chem Chem Phys 2024; 26:23654-23662. [PMID: 39224052 DOI: 10.1039/d4cp02779e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ketoaldehydes are key intermediates in biochemical processes including carbohydrate, lipid, and amino acid metabolism. Despite their crucial role in the interstellar synthesis of essential biomolecules necessary for the Origins of Life, their formation mechanisms have largely remained elusive. Here, we report the first bottom-up formation of methylglyoxal (CH3C(O)CHO)-the simplest ketoaldehyde-through the barrierless recombination of the formyl (HĊO) radical with the acetyl (CH3ĊO) radical in low-temperature interstellar ice analogs upon exposure to energetic irradiation as proxies of galactic cosmic rays. Utilizing vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry and isotopic substitution studies, methylglyoxal and its enol tautomer 2-hydroxypropenone (CH3C(OH)CO) were identified in the gas phase during the temperature-programmed desorption of irradiated carbon monoxide-acetaldehyde (CO-CH3CHO) ices, suggesting their potential as promising candidates for future astronomical searches. Once synthesized in cold molecular clouds, methylglyoxal can serve as a key precursor to sugars, sugar acids, and amino acids. Furthermore, this work provides the first experimental evidence for tautomerization of a ketoaldehyde in interstellar ice analogs, advancing our fundamental knowledge of how ketoaldehydes and their enol tautomers can be synthesized in deep space.
Collapse
Affiliation(s)
- Jia Wang
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Joshua H Marks
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | - Ivan O Antonov
- Samara National Research University, Samara 443086, Russia.
| | - Ralf I Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
2
|
Nonne M, Melosso M, Tonolo F, Bizzocchi L, Alessandrini S, Guillemin JC, Dore L, Puzzarini C. Tracing Prebiotic Molecules: Rotational Spectroscopy of Deuterated Glycolaldehyde and ( Z)-1,2-Ethenediol. J Phys Chem A 2024; 128:4850-4858. [PMID: 38842131 DOI: 10.1021/acs.jpca.4c02533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Glycolaldehyde, an important prebiotic molecule, along with its monodeuterated species and its higher energy tautomer, (Z)-1,2-ethenediol, has been detected in the interstellar medium. Although the elemental D/H ratio in the universe is only ∼1.6 × 10-5, the deuterium relative abundance in interstellar molecules might be by far larger than this. As such, it provides a remarkable and almost unique diagnostic tool. In particular, it might help elucidate the reaction mechanisms that lead to the formation of the so-called complex organic molecules. It is therefore crucial to extend the census of the interstellar deuterated molecules. To this aim, in this work, we present for the first time a spectroscopic investigation of the rotational spectra of the CHDOD-CHO bideuterated variant of glycolaldehyde and of mono- and bideuterated species of (Z)-1,2-ethenediol (CHOD═CHOD, CHOD═CHOH, and CHOH═CHOD rotamers). For each species, more than a hundred transitions have been assigned. Their analysis led to the accurate determination of all rotational constants as well as quartic and sextic centrifugal distortion terms, thus providing spectroscopic line catalogs suitable for supporting astronomical searches. In addition, the rotational constants of the bideuterated glycolaldehyde isotopologue studied in this work allowed us to improve the semiexperimental equilibrium structure determination for this molecule.
Collapse
Affiliation(s)
- Michela Nonne
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Naples, Italy
| | - Mattia Melosso
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Francesca Tonolo
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Luca Bizzocchi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Silvia Alessandrini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Jean-Claude Guillemin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France
| | - Luca Dore
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
3
|
Wang J, Marks JH, Fortenberry RC, Kaiser RI. Interstellar formation of glyceric acid [HOCH 2CH(OH)COOH]-The simplest sugar acid. SCIENCE ADVANCES 2024; 10:eadl3236. [PMID: 38478624 PMCID: PMC10936953 DOI: 10.1126/sciadv.adl3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Glyceric acid [HOCH2CH(OH)COOH]-the simplest sugar acid-represents a key molecule in biochemical processes vital for metabolism in living organisms such as glycolysis. Although critically linked to the origins of life and identified in carbonaceous meteorites with abundances comparable to amino acids, the underlying mechanisms of its formation have remained elusive. Here, we report the very first abiotic synthesis of racemic glyceric acid via the barrierless radical-radical reaction of the hydroxycarbonyl radical (HOĊO) with 1,2-dihydroxyethyl (HOĊHCH2OH) radical in low-temperature carbon dioxide (CO2) and ethylene glycol (HOCH2CH2OH) ices. Using isomer-selective vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry, glyceric acid was identified in the gas phase based on the adiabatic ionization energies and isotopic substitution studies. This work reveals the key reaction pathways for glyceric acid synthesis through nonequilibrium reactions from ubiquitous precursor molecules, advancing our fundamental knowledge of the formation pathways of key biorelevant organics-sugar acids-in deep space.
Collapse
Affiliation(s)
- Jia Wang
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Joshua H. Marks
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ryan C. Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Ralf I. Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
Shao X, Wu Z, Wang L, Rauhut G, Zeng X. Identification and Photochemistry of the Mercaptomethyl Radical. J Phys Chem Lett 2023; 14:10450-10456. [PMID: 37962268 DOI: 10.1021/acs.jpclett.3c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mercaptomethyl radical (·CH2SH) is a higher-energy isomer of the methylthio radical (CH3S·) that has been proposed as an important intermediate in atmospheric and interstellar sulfur chemistry. Herein, we report the spectroscopic identification of ·CH2SH during the UV (365 nm) photolysis of CH3S· in a solid Ar-matrix at 10 K. Upon subsequent irradiation at 266 nm, the dehydrogenation of ·CH2SH to yield CS via the intermediacy of the elusive thioformyl radical (HCS·) has also been observed. The characterization of ·CH2SH and HCS· with matrix-isolation IR and UV-vis spectroscopy is supported by 13C-isotope labeling and quantum chemical calculations at the CCSD(T)-F12a/cc-pVTZ-F12 level using configuration-selective vibrational configuration interaction theory (VCI). The disclosed photochemistry of ·CH2SH provides new insight into understanding the chemical evolution of organosulfur molecules in the interstellar medium (ISM).
Collapse
Affiliation(s)
- Xin Shao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Zhuang Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Priyadarshini M, Ahmad A, Das I, Ghangrekar MM, Dutta BK. Efficacious degradation of ethylene glycol by ultraviolet activated persulphate: reaction kinetics, transformation mechanisms, energy demand, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85071-85086. [PMID: 37227630 DOI: 10.1007/s11356-023-27596-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Ethylene glycol or 1,2-ethanediol (EG) is a persistent and toxic substance in the environment and extensively applied in petrochemical, surfactants, antifreeze, asphalt emulsion paints, cosmetics, plastics, and polyester fiber industries. Degradation of EG by using ultraviolet (UV) activated hydrogen peroxide (H2O2) and persulfate (PS) or persulfate anion (S2O82-) based advanced oxidation processes (AOPs) were explored. The result obtained demonstrate that UV/PS (85.7 ± 2.5%) has exhibited improved degradation efficiency of EG as compared to UV/H2O2 (40.4 ± 3.2%) at optimal operating conditions of 24 mM of EG concentration, 5 mM of H2O2, 5 mM of PS, 1.02 mW cm-2 of UV fluence, and pH of 7.0. Impacts of operating factors, including initial EG concentration, oxidant dosage, reaction duration, and the impact of different water quality parameters, were also explored in this present investigation. The degradation of EG in Milli-Q® water followed pseudo - first order reaction kinetics in both methods having a rate constant of about 0.070 min-1 and 0.243 min-1 for UV/H2O2 and UV/PS, respectively, at optimum operating conditions. Additionally, an economic assessment was also conducted under optimal experimental conditions, and the electrical energy per order and total operational cost for treating per m3 of EG-laden wastewater was observed to be about 0.042 kWh m-3 order-1 and 0.221 $ m-3 order-1, respectively, for UV/PS, which was slightly lower than UV/H2O2 (0.146 kWh m-3 order-1; 0.233 $ m-3 order-1). The potential degradation mechanisms were proposed based on intermediate by-products detected by Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). Moreover, real petrochemical effluent containing EG was also treated by UV/PS, demonstrating 74.7 ± 3.8% of EG and 40.7 ± 2.6% of total organic carbon removal at 5 mM of PS and 1.02 mW cm-2 of UV fluence. A toxicity tests on Escherichia coli (E. coli) and Vigna radiata (green gram) confirmed non-toxic nature of UV/PS treated water.
Collapse
Affiliation(s)
- Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Indrasis Das
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Makarand Madhao Ghangrekar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Binay K Dutta
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
6
|
Marks JH, Wang J, Kleimeier NF, Turner AM, Eckhardt AK, Kaiser RI. Prebiotic Synthesis and Isomerization in Interstellar Analog Ice: Glycinal, Acetamide, and Their Enol Tautomers. Angew Chem Int Ed Engl 2023; 62:e202218645. [PMID: 36702757 DOI: 10.1002/anie.202218645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Glycinal (HCOCH2 NH2 ) and acetamide (CH3 CONH2 ) are simple molecular building blocks of biomolecules in prebiotic chemistry, though their origin on early Earth and formation in interstellar media remain a mystery. These molecules are formed with their tautomers in low temperature interstellar model ices upon interaction with simulated galactic cosmic rays. Glycinal and acetamide are accessed via barrierless radical-radical reactions of vinoxy (⋅CH2 CHO) and acetyl (⋅C(O)CH3 ), and then undergo keto-enol tautomerization. Exploiting tunable photoionization reflectron time-of-flight mass spectroscopy and photoionization efficiency (PIE) curves, these results demonstrate fundamental reaction pathways for the formation of complex organics through non-equilibrium ice reactions in cold molecular cloud environments. These molecules demonstrate an unconventional starting point for abiotic synthesis of organics relevant to contemporary biomolecules like polypeptides and cell membranes in deep space.
Collapse
Affiliation(s)
- Joshua H Marks
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jia Wang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - N Fabian Kleimeier
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Andrew M Turner
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - André K Eckhardt
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.,W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
7
|
Wang J, Marks JH, Turner AM, Mebel AM, Eckhardt AK, Kaiser RI. Gas-phase detection of oxirene. SCIENCE ADVANCES 2023; 9:eadg1134. [PMID: 36897943 PMCID: PMC10005165 DOI: 10.1126/sciadv.adg1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Oxirenes-highly strained 4π Hückel antiaromatic organics-have been recognized as key reactive intermediates in the Wolff rearrangement and in interstellar environments. Predicting short lifetimes and tendency toward ring opening, oxirenes are one of the most mysterious classes of organic transients, with the isolation of oxirene (c-C2H2O) having remained elusive. Here, we report on the preparation of oxirene in low-temperature methanol-acetaldehyde matrices upon energetic processing through isomerization of ketene (H2CCO) followed by resonant energy transfer of the internal energy of oxirene to the vibrational modes (hydroxyl stretching and bending, methyl deformation) of methanol. Oxirene was detected upon sublimation in the gas phase exploiting soft photoionization coupled with a reflectron time-of-flight mass spectrometry. These findings advance our fundamental understanding of the chemical bonding and stability of cyclic, strained molecules and afford a versatile strategy for the synthesis of highly ring-strained transients in extreme environments.
Collapse
Affiliation(s)
- Jia Wang
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Joshua H. Marks
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Andrew M. Turner
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - André K. Eckhardt
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Ralf I. Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
8
|
Mardyukov A, Wende RC, Schreiner PR. Matrix isolation and photorearrangement of cis- and trans-1,2-ethenediol to glycolaldehyde. Chem Commun (Camb) 2023; 59:2596-2599. [PMID: 36753323 DOI: 10.1039/d2cc06331j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1,2-Ethenediols are deemed key intermediates in prebiotic and interstellar syntheses of carbohydrates. Here we present the gas-phase synthesis of these enediols, the high-energy tautomers of glycolaldehyde, trapped in cryogenic argon matrices. Importantly, upon photolysis at λ = 180-254 nm, the enols rearrange to the simplest sugar glycolaldehyde.
Collapse
Affiliation(s)
- Artur Mardyukov
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany.
| | - Raffael C Wende
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany.
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany.
| |
Collapse
|
9
|
Wang J, Marks JH, Turner AM, Nikolayev AA, Azyazov V, Mebel AM, Kaiser RI. Mechanistical study on the formation of hydroxyacetone (CH 3COCH 2OH), methyl acetate (CH 3COOCH 3), and 3-hydroxypropanal (HCOCH 2CH 2OH) along with their enol tautomers (prop-1-ene-1,2-diol (CH 3C(OH)CHOH), prop-2-ene-1,2-diol (CH 2C(OH)CH 2OH), 1-methoxyethen-1-ol (CH 3OC(OH)CH 2) and prop-1-ene-1,3-diol (HOCH 2CHCHOH)) in interstellar ice analogs. Phys Chem Chem Phys 2023; 25:936-953. [PMID: 36285574 DOI: 10.1039/d2cp03543j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We unravel, for the very first time, the formation pathways of hydroxyacetone (CH3COCH2OH), methyl acetate (CH3COOCH3), and 3-hydroxypropanal (HCOCH2CH2OH), as well as their enol tautomers within mixed ices of methanol (CH3OH) and acetaldehyde (CH3CHO) analogous to interstellar ices in the ISM exposed to ionizing radiation at ultralow temperatures of 5 K. Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) and isotopically labeled ices, the reaction products were selectively photoionized allowing for isomer discrimination during the temperature-programmed desorption phase. Based on the distinct mass-to-charge ratios and ionization energies of the identified species, we reveal the formation pathways of hydroxyacetone (CH3COCH2OH), methyl acetate (CH3COOCH3), and 3-hydroxypropanal (HCOCH2CH2OH) via radical-radical recombination reactions and of their enol tautomers (prop-1-ene-1,2-diol (CH3C(OH)CHOH), prop-2-ene-1,2-diol (CH2C(OH)CH2OH), 1-methoxyethen-1-ol (CH3OC(OH)CH2) and prop-1-ene-1,3-diol (HOCH2CHCHOH)) via keto-enol tautomerization. To the best of our knowledge, 1-methoxyethen-1-ol (CH3OC(OH)CH2) and prop-1-ene-1,3-diol (HOCH2CHCHOH) are experimentally identified for the first time. Our findings help to constrain the formation mechanism of hydroxyacetone and methyl acetate detected within star-forming regions and suggest that the hitherto astronomically unobserved isomer 3-hydroxypropanal and its enol tautomers represent promising candidates for future astronomical searches. These enol tautomers may contribute to the molecular synthesis of biologically relevant molecules in deep space due to their nucleophilic character and high reactivity.
Collapse
Affiliation(s)
- Jia Wang
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Joshua H Marks
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Andrew M Turner
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Anatoliy A Nikolayev
- Lebedev Physical Institute, Samara 443011, Russia.,Samara National Research University, Samara 443086, Russia
| | | | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Ralf I Kaiser
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA. .,Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
10
|
Zhu C, Wang H, Medvedkov I, Marks J, Xu M, Yang J, Yang T, Pan Y, Kaiser RI. Exploitation of Synchrotron Radiation Photoionization Mass Spectrometry in the Analysis of Complex Organics in Interstellar Model Ices. J Phys Chem Lett 2022; 13:6875-6882. [PMID: 35861849 DOI: 10.1021/acs.jpclett.2c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unravelling the generation of complex organic molecules (COMs) on interstellar nanoparticles (grains) is essential in establishing predictive astrochemical reaction networks and recognizing evolution stages of molecular clouds and star-forming regions. The formation of COMs has been associated with the irradiation of interstellar ices by ultraviolet photons and galactic cosmic rays. Herein, we pioneer the first incorporation of synchrotron vacuum ultraviolet photoionization reflectron time-of-flight mass spectrometry (SVUV-PI-ReTOF-MS) in laboratory astrophysics simulation experiments to afford an isomer-selective identification of key COMs (ketene (H2C═CO); acetaldehyde (CH3CHO); vinyl alcohol (H2C═CHOH)) based on photoionization efficiency (PIE) curves of molecules desorbing from exposed carbon monoxide-methane (CO-CH4) ices. Our results demonstrate that the SVUV-PI-ReTOF-MS approach represents a versatile, rapid methodology for a comprehensive identification and explicit understanding of the complex organics produced in space simulation experiments. This methodology is expected to significantly improve the predictive nature of astrochemical models of complex organic molecules formed abiotically in deep space, including biorelated species linked to the origins-of-life topic.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, University of Hawai'i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Hailing Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P.R. China
| | - Iakov Medvedkov
- Department of Chemistry, University of Hawai'i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Joshua Marks
- Department of Chemistry, University of Hawai'i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Minggao Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Jiuzhong Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tao Yang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P.R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P.R. China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
11
|
Lu B, Jiang X, Zeng X. Photolytic insertion of carbon monoxide into nitrosyl chloride: formation of nitrosoformyl chloride. Phys Chem Chem Phys 2022; 24:17673-17678. [PMID: 35837884 DOI: 10.1039/d2cp02913h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrosocarbonyls are exotic intermediates that remain scarcely characterized. By UV photolysis (365 nm) of nitrosyl chloride (ClNO) embedded in solid CO ice at 20 K, the elusive nitrosoformyl chloride (ClC(O)NO) has been synthesized via CO-insertion into the Cl-N bond in ClNO. The characterization of ClC(O)NO with matrix-isolation IR spectroscopy is supported by 13C and 15N isotope labeling and quantum chemical calculations at the B3LYP/6-311+G(3df) level of theory. Upon subsequent laser irradiation at 266 nm, CO-elimination in ClC(O)NO occurs by reformation of ClNO. In line with the calculated potential energy surface for ClC(O)NO at the CCSD(T)-F12a/aug-cc-pVTZ//B3LYP/6-311+G(3df) level, the observed IR frequencies and the corresponding isotopic shifts coincide with the calculated values for the lowest-energy planar conformer, in which the CO and NO moities adopt trans configuration with respect to the C-N bond. Furthermore, the CO-insertion in ClNO involves a stepwise pathway by first homolytic cleavage of the Cl-N bond in ClNO (→ Cl˙ + ˙NO), followed by successive CO-trapping (CO + Cl˙ → ClCO˙) and radical combination (ClCO˙ + ˙NO → ClC(O)NO) inside the solid CO-matrix cages.
Collapse
Affiliation(s)
- Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| | - Xin Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
12
|
Melosso M, Bizzocchi L, Gazzeh H, Tonolo F, Guillemin JC, Alessandrini S, Rivilla VM, Dore L, Barone V, Puzzarini C. Gas-phase identification of ( Z)-1,2-ethenediol, a key prebiotic intermediate in the formose reaction. Chem Commun (Camb) 2022; 58:2750-2753. [PMID: 35119446 DOI: 10.1039/d1cc06919e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prebiotic sugars are thought to be formed on primitive Earth by the formose reaction. However, their formation is not fully understood and it is plausible that key intermediates could have formed in extraterrestrial environments and subsequently delivered on early Earth by cometary bodies. 1,2-Ethenediol, the enol form of glycolaldehyde, represents a highly reactive intermediate of the formose reaction and is likely detectable in the interstellar medium. Here, we report the identification and first characterization of (Z)-1,2-ethenediol by means of rotational spectroscopy. The title compound has been produced in the gas phase by flash vacuum pyrolysis of bis-exo-5-norbornene-2,3-diol at 750 °C, through a retro-Diels-Alder reaction. The spectral analysis was guided by high-level quantum-chemical calculations, which predicted spectroscopic parameters in very good agreement with the experiment. Our study provides accurate spectral data to be used for searches of (Z)-1,2-ethenediol in the interstellar space.
Collapse
Affiliation(s)
- Mattia Melosso
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy. .,Scuola Superiore Meridionale, Università di Napoli Federico II, Largo San Marcellino 10, 80138 Naples, Italy
| | - Luca Bizzocchi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy. .,Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Houda Gazzeh
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.,Université de Monastir, Avenue Taher Hadded B. P 56, Monastir 5000, Tunisia
| | - Francesca Tonolo
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy. .,Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Jean-Claude Guillemin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France
| | - Silvia Alessandrini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy. .,Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Víctor M Rivilla
- Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir Km. 4, Torrejón de Ardoz, 28850 Madrid, Spain.,INAF - Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Florence, Italy
| | - Luca Dore
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Cristina Puzzarini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
13
|
Kleimeier NF, Kaiser RI. Bottom-Up Synthesis of 1,1-Ethenediol (H 2CC(OH) 2)─The Simplest Unsaturated Geminal Diol─In Interstellar Analogue Ices. J Phys Chem Lett 2022; 13:229-235. [PMID: 34967646 DOI: 10.1021/acs.jpclett.1c03515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Because of their nucleophilic character and high reactivity, enols─reaction intermediates carrying a hydroxyl group connected to a carbon-carbon double bond─play a key role in the formation of complex organic molecules in astrobiology and biochemistry. Here, we report the first bottom-up preparation of 1,1-ethenediol (H2CC(OH)2)─the simplest unsaturated geminal enol of acetic acid (CH3COOH) and potential precursor for the formation of glycine─in interstellar analogue ices of carbon dioxide and methane processed by proxies of galactic cosmic rays. These enols can easily form via nonequilibrium chemistry in low temperature (10 K) interstellar ices at abundances orders of magnitude higher than thermodynamically predicted. These energetically less favorable tautomers remain stable in ice-coated interstellar nanoparticles in molecular clouds and also upon sublimation into the gas phase in star forming regions thus providing the raw material to a complex and exotic organic chemistry under extreme conditions in deep space.
Collapse
Affiliation(s)
- N Fabian Kleimeier
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
- W. M. Keck Laboratory in Astrochemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
- W. M. Keck Laboratory in Astrochemistry, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States
| |
Collapse
|