1
|
Cao Z, Wang Q, Neumann H, Beller M. Modular and Diverse Synthesis of Acrylamides by Palladium-Catalyzed Hydroaminocarbonylation of Acetylene. Angew Chem Int Ed Engl 2024; 63:e202410597. [PMID: 38986016 DOI: 10.1002/anie.202410597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
The development of all kinds of covalent drugs had a major impact on the improvement of the human health system. Covalent binding to target proteins is achieved by so-called electrophilic warheads, which are incorporated in the respective drug molecule. In the last decade, specifically acrylamides emerged as attractive warheads in covalent drug design. Herein, a straightforward palladium-catalyzed hydroaminocarbonylation of acetylene has been developed, allowing a modular and diverse synthesis of bio-active acrylamides. This general protocol features high atom efficiency, wide functional group compatibility, high chemoselectivity and proceeds additive free under mild reaction conditions. The synthetic utility of this protocol is showcased in the synthesis of ibrutinib, osimertinib, and other bio-active compound derivatives.
Collapse
Affiliation(s)
- Zhusong Cao
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Qiang Wang
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
2
|
Mu Y, Dai Y, Ruiz DA, Liu LL, Xu LP, Tung CH, Kong L. Aromatic 1,4,2,3-Diazadiborole Featuring an Unsymmetrical B=B Entity: A Versatile Synthon for Unusual Boron Heterocycles. Angew Chem Int Ed Engl 2024; 63:e202405905. [PMID: 38771269 DOI: 10.1002/anie.202405905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
The replacement of a CC unit with an isoelectronic BN unit in aromatic systems can give rise to molecules and materials with fascinating properties. We report here the synthesis, characterization, and reactivity of a 1,4,2,3-diazadiborole species, 2, featuring an unprecedented 6π-aromatic BN-heterocyclic moiety that is isoelectronic to cyclopentadienide (Cp-). Bearing an unsymmetrical B=B entity, 2 exhibits reactivity toward oxidants, protic reagents, electrophiles, and unsaturated substrates. This reactivity facilitates the synthesis of a variety of novel mono- and bicyclic organoboron derivatives through mechanisms including ring retention, cleavage/recombination, annulation, and expansion. These findings reveal innovative synthetic routes to BN-embedded aromatic compounds via desymmetrization, affording unique building blocks for synthetic chemistry.
Collapse
Affiliation(s)
- Yu Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuyang Dai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - David A Ruiz
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Dong S, Zhu J. Predicting Small Molecule Activation including Catalytic Hydrogenation of Dinitrogen Promoted by a Dual Lewis Acid. Chem Asian J 2023; 18:e202200991. [PMID: 36353939 DOI: 10.1002/asia.202200991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/20/2022] [Indexed: 11/12/2022]
Abstract
For decades, N2 activation and functionalization have required the use of transition metal complexes. Thus, it is one of the most challenging projects to activate the abundant dinitrogen through metal-free systems under mild conditions. Here, we demonstrate a proof-of-concept study on the catalytic hydrogenation of dinitrogen (with activation energy as low as 15.3 kcal mol-1 ) initiated by a dual Lewis acid (DLA) via density functional theory (DFT) calculations. In addition, such a DLA could be also used to activate a series of small molecules including carbon dioxide, formaldehyde, N-ethylenemethylamine, and acetonitrile. It is found that aromaticity plays an important role in stabilizing intermediates and products. Our findings provide an alternative approach to N2 activation and functionalization, highlighting a great potential of DLA for small molecule activation.
Collapse
Affiliation(s)
- Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
4
|
Fantuzzi F, Jiao Y, Dewhurst RD, Weinhold F, Braunschweig H, Engels B. Can a Wanzlick-like equilibrium exist between dicoordinate borylenes and diborenes? Chem Sci 2022; 13:5118-5129. [PMID: 35655568 PMCID: PMC9093173 DOI: 10.1039/d1sc05988b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/03/2022] [Indexed: 12/23/2022] Open
Abstract
Boron chemistry has experienced tremendous progress in the last few decades, resulting in the isolation of a variety of compounds with remarkable electronic structures and properties. Some examples are the singly Lewis-base-stabilised borylenes, wherein boron has a formal oxidation state of +I, and their dimers featuring a boron-boron double bond, namely diborenes. However, no evidence of a Wanzlick-type equilibrium between borylenes and diborenes, which would open a valuable route to the latter compounds, has been found. In this work, we combine DFT, coupled-cluster, multireference methods, and natural bond orbital/natural resonance theory analyses to investigate the electronic, structural, and kinetic factors controlling the reactivity of the transient CAAC-stabilised cyanoborylene, which spontaneously cyclotetramerises into a butterfly-type, twelve-membered (BCN)4 ring, and the reasons why its dimerisation through the boron atoms is hampered. The computations are also extended to the NHC-stabilised borylene counterparts. We reveal that the borylene ground state multiplicity dictates the preference for self-stabilising cyclooligomerisation over boron-boron dimerisation. Our comparison between NHC- vs. CAAC-stabilised borylenes provides a convincing rationale for why the reduction of the former always gives diborenes while a range of other products is found for the latter. Our findings provide a theoretical background for the rational design of base-stabilised borylenes, which could pave the way for novel synthetic routes to diborenes or alternatively non-dimerising systems for small-molecule activation.
Collapse
Affiliation(s)
- Felipe Fantuzzi
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg Emil-Fischer-Str. 42 97074 Würzburg Germany
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- School of Physical Sciences, Ingram Building, University of Kent Park Wood Road Canterbury CT2 7NH UK
| | - Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Hunan University of Science and Technology Xiangtan 411201 China
| | - Rian D Dewhurst
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison Madison WI 53706 USA
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Bernd Engels
- Institute for Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg Emil-Fischer-Str. 42 97074 Würzburg Germany
| |
Collapse
|
5
|
Yang B, Lu S, Wang Y, Zhu S. Diverse synthesis of C2-linked functionalized molecules via molecular glue strategy with acetylene. Nat Commun 2022; 13:1858. [PMID: 35388000 PMCID: PMC8986794 DOI: 10.1038/s41467-022-29556-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/13/2022] [Indexed: 02/08/2023] Open
Abstract
As the simplest alkyne and an abundant chemical feedstock, acetylene is an ideal two-carbon building block. However, in contrast to substituted alkynes, catalytic methods to incorporate acetylene into fine chemicals are quite limited. Herein, we developed a photoredox-catalyzed synthetic protocol for diverse C2-linked molecules via a molecular glue strategy using gaseous acetylene under mild conditions. Initiated by addition of an acyl radical to acetylene, two cascade transformations follow. One involves a double addition for the formation of 1,4-diketones and the other where the intermediate vinyl ketone is intercepted by a radical formed from a heterocycle. In addition to making two new C-C bonds, two C-H bonds are also created in two mechanistically distinct ways: one via a C-H abstraction and the other via protonation. This system offers a reliable and safe way to incorporate gaseous acetylene into fine chemicals and expands the utility of acetylene in organic synthesis. Although acetylene is an ideal two-carbon building block, very few catalytic methods can be applied to incorporate acetylene into fine chemicals. Here, the authors show photoredox-catalyzed syntheses of C2- linked molecules with gaseous acetylene under mild conditions.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shaodong Lu
- Singfar Laboratories, Guangzhou, 510670, China
| | | | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|