1
|
Zhou YK, Zhang ZY, Liu HY, Li YH, Zhang ZC, Chen JH, Yang Z. Stereoselective Construction of the ABCDE Pentacyclic Motif of Phainanoids via Norrish-Yang Photocyclization Reaction. Org Lett 2024; 26:8217-8221. [PMID: 39311758 DOI: 10.1021/acs.orglett.4c02411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A Norrish-Yang photocyclization reaction has been applied to regio- and stereoselective construction of the ABCDE pentacyclic motif of natural product phainanoids. The observed substrate conformation control implicates this powerful reaction could be applied to the construction of structurally diverse natural product scaffolds.
Collapse
Affiliation(s)
- Yi-Ke Zhou
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen-Yu Zhang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hao-Yuan Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuan-He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhong-Chao Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jia-Hua Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhen Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
2
|
Jeon BK, Cho SY, Lee DH. Stereoselective Approach to the Core Structure of (+)-Phainanoid A via Strategically Engineered Cascade Polyene Cyclization. Org Lett 2024; 26:8079-8083. [PMID: 39291842 DOI: 10.1021/acs.orglett.4c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Stereoselective synthesis of 3b and its cascade polyene cyclization to 18b have been described. Acyclic polyene 3b was prepared from allyl bromide 4 and 1,3-dithiane 5, and intermediates 4 and 5 were synthesized from the commercially available geraniol (6) and cyclopenten-2-one (8), respectively, using enantioselective reduction of ketone, Johnson-Claisen rearrangement, and the Suzuki reaction as key steps. Au(I)-mediated diastereoselective polyene cyclization of 3b efficiently afforded tetracyclic compound 18b.
Collapse
Affiliation(s)
- Bo Keun Jeon
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - So Yong Cho
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Duck Hyung Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| |
Collapse
|
3
|
Ma D, Duran P, Al-Ahmad R, Hestehave S, Joa M, Alsbiei O, Rodríguez-Palma EJ, Li Y, Wang S, Khanna R, Dai M. C-H Functionalization-Enabled 11-Step Semisynthesis of (-)-Veragranine A and Characterization of Synthetic Analogs in Osteoarthritis-related Pain Treatment. J Am Chem Soc 2024; 146:16698-16705. [PMID: 38843262 PMCID: PMC11191690 DOI: 10.1021/jacs.4c04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
We report an efficient semisynthesis of the cholestane steroidal alkaloid (-)-veragranine A with a 6/6/6/5/6/6 hexacyclic ring system, eight stereocenters, and a unique C12-C23 linkage. Our synthesis features a Schönecker-Baran C-H oxidation at C12, a Suzuki-Miyaura cross-coupling to form the C12-C23 bond, and a hydrogen atom transfer (HAT)-initiated Minisci C-H cyclization to forge the C20-C22 bond with desired stereochemistry at C20. These enabling transformations significantly enhanced the overall synthetic efficiency and delivered (-)-veragranine A in 11 steps and over 200 mg from cheap and readily available dehydroepiandrosterone. In addition, this approach allowed flexible syntheses of novel synthetic analogs for biological evaluations in sensory neurons in vitro and in an in vivo model of arthritic pain, from which two novel lead compounds were identified for further development.
Collapse
Affiliation(s)
- Donghui Ma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Paz Duran
- Department
of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Reem Al-Ahmad
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sara Hestehave
- Department
of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Margarita Joa
- Department
of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Omar Alsbiei
- Department
of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Erick J. Rodríguez-Palma
- Department
of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, United States
| | - Yanrong Li
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Shilin Wang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Rajesh Khanna
- Department
of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Mingji Dai
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Department
of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Zhang S, Goswami S, Schulz KHG, Gill K, Yin X, Hwang J, Wiese J, Jaffer I, Gil RR, Garcia-Bosch I. Regioselective Hydroxylation of Unsymmetrical Ketones Using Cu, H 2O 2, and Imine Directing Groups via Formation of an Electrophilic Cupric Hydroperoxide Core. J Org Chem 2024; 89:2622-2636. [PMID: 38324058 PMCID: PMC10877615 DOI: 10.1021/acs.joc.3c02647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Herein, we describe the regioselective functionalization of unsymmetrical ketones using imine directing groups, Cu, and H2O2. The C-H hydroxylation of the substrate-ligands derived from 2-substituted benzophenones occurred exclusively at the γ-position of the unsubstituted ring due to the formation of only one imine stereoisomer. Conversely, the imines derived from 4-substituted benzophenones produced E/Z mixtures that upon reacting with Cu and H2O2 led to two γ-C-H hydroxylation products. Contrary to our initial hypothesis, the ratio of the hydroxylation products did not depend on the ratio of the E/Z isomers but on the electrophilicity of the reactive [LCuOOH]1+. A detailed mechanistic analysis suggests a fast isomerization of the imine substrate-ligand binding the CuOOH core before the rate-determining electrophilic aromatic hydroxylation. Varying the benzophenone substituents and/or introducing electron-donating and electron-withdrawing groups on the 4-position of pyridine of the directing group allowed for fine-tuning of the electrophilicity of the mononuclear [LCuOOH]1+ to reach remarkable regioselectivities (up to 91:9 favoring the hydroxylation of the electron-rich arene ring). Lastly, we performed the C-H hydroxylation of alkyl aryl ketones, and like in the unsymmetrical benzophenones, the regioselectivity of the transformations (sp3 vs sp2) could be controlled by varying the electronics of the substrate and/or the directing group.
Collapse
Affiliation(s)
- Shuming Zhang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sunipa Goswami
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Karl H. G. Schulz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Karan Gill
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xinyi Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jimin Hwang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jasmine Wiese
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Isabel Jaffer
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Roberto R. Gil
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Isaac Garcia-Bosch
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
5
|
Liu HY, Zhang ZY, Zhou YK, Chen JH, Yang Z, Li YH. Synthesis towards Phainanoid F: Photo-induced 6π-Electrocyclization for Constructing Contiguous All-Carbon Quaternary Centers. Chem Asian J 2023; 18:e202300622. [PMID: 37677108 DOI: 10.1002/asia.202300622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
In this paper, we report an efficient strategy for synthesizing the DEFGH rings of phainanoid F. The key to the construction of the 13,30-cyclodammarane skeleton of the molecule was a photo-induced 6π-electrocyclization and a homoallylic elimination. Notably, this is a rare example of using electrocyclization reaction to simultaneously construct two vicinal quaternary carbons in total synthesis. The strategy outlined here forms the basis of our total synthesis of Phainanoid F, and it could also serve as a generally applicable approach for synthesizing other natural products containing similar 13,30-cyclodammarane skeletons.
Collapse
Affiliation(s)
- Hao-Yuan Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zhen-Yu Zhang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yi-Ke Zhou
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jia-Hua Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zhen Yang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Chemical Oncogenomic, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yuan-He Li
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Chen XW, Hou ZC, Chen C, Zhang LH, Chen ME, Zhang FM. Enantioselective total syntheses of six natural and two proposed meroterpenoids from Psoralea corylifolia. Chem Sci 2023; 14:5699-5704. [PMID: 37265714 PMCID: PMC10231314 DOI: 10.1039/d3sc00582h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
The first enantioselective total syntheses of six natural and two proposed meroterpenoids isolated from Psoralea corylifolia have been achieved in 7-9 steps from 2-methylcyclohexanone. The current synthetic approaches feature a high level of synthetic flexibility, stereodivergent fashion and short synthetic route, thereby providing a potential platform for the preparation of numerous this-type meroterpenoids and their pseudo-natural products.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Zi-Chao Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Chi Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Ling-Hui Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Meng-En Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
7
|
Xun L, Zhang Z, Zhou Y, Qin S, Fu S, Liu B. Stereodivergent Construction of [5,5]-Oxaspirolactones of Phainanoids. J Org Chem 2023; 88:3987-3991. [PMID: 36883240 DOI: 10.1021/acs.joc.2c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A stereodivergent synthesis of [5,5]-oxaspirolactones of phainanoids is presented herein. Through precisely tuning the inherent substitution differences on cyclopropanol, a palladium-catalyzed cascade carbonylative lactonization enables the stereodivergent synthesis of [5,5]-oxaspirolactones of phainanoids.
Collapse
Affiliation(s)
- Lizhi Xun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhijiang Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Song Qin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
8
|
Xie J, Zheng Z, Liu X, Zhang N, Choi S, He C, Dong G. Asymmetric Total Synthesis of (+)-Phainanoid A and Biological Evaluation of the Natural Product and Its Synthetic Analogues. J Am Chem Soc 2023; 145:4828-4852. [PMID: 36799470 DOI: 10.1021/jacs.2c13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Here, we report our detailed efforts toward the synthesis of phainanoids, a novel class of dammarane-type triterpenoids with potent immunosuppressive activities and unique structural features. Systematic model studies have been carried out, and efficient approaches have been established to construct the benzofuranone-based 4,5-spirocycle, the D/E/F tricyclic core, the [4.3.1] propellane, and the 5,5-oxaspirolactone moieties. The asymmetric synthesis of (+)-phainanoid A has been achieved through kinetic resolution of the tricyclic core followed by diastereoselective installation of the A/B/C and G/H rings and fragment coupling with the enantioenriched I/J rings. In addition, novel estrone-derived phainanoid analogues have been prepared. The immunosuppressive and cell survival assays revealed that (+)-phainanoid A and some of its synthetic analogues can specifically inhibit stimulation-induced lymphocyte proliferation but not cell survival at their effective concentrations. Preliminary structure-activity relationship information has been obtained, which could inspire future design of immunosuppressive phainanoid analogues.
Collapse
Affiliation(s)
- Jiaxin Xie
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Zhong Zheng
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Xin Liu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Nan Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Shinyoung Choi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Zhao JX, Yue JM. Frontier studies on natural products: moving toward paradigm shifts. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Xie J, Dong G. Cyclopropylcarbinyl cation chemistry in synthetic method development and natural product synthesis: cyclopropane formation and skeletal rearrangement. Org Chem Front 2023. [DOI: 10.1039/d3qo00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
In this Review, the underrecognized utilities of the cyclopropylcarbinyl cation chemistry are summarized in cyclopropane synthesis and skeletal rearrangements, and their applications in natural product total synthesis are highlighted.
Collapse
|
11
|
Zhang Y, Li K, Gao W, Liu X, Yuan H, Tang L, Fan Z. Tandem Synthesis of 1,2,3-Thiadiazoles with 3,4-Dichloroisothiazoles and Hydrazines under External Oxidant- and Sulfur-Free Conditions. Org Lett 2022; 24:6599-6603. [PMID: 36054902 DOI: 10.1021/acs.orglett.2c02595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1,2,3-Thiadiazoles are among the most important heterocyclic motifs, with wide applications in natural products and medicinal chemistry. Herein, we disclose a tandem reaction for the synthesis of structurally diverse 1,2,3-thiadiazoles from 3,4-dichloroisothiazol-5-ketones and hydrazines. This method is characterized by mild external oxidant- and sulter-free reaction conditions, a broad substrate scope, and easy purification.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Haolin Yuan
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
12
|
Santana VCS, Rocha ECS, Pavan JCS, Heleno VCG, de Lucca EC. Selective Oxidations in the Synthesis of Complex Natural ent-Kauranes and ent-Beyeranes. J Org Chem 2022; 87:10462-10466. [PMID: 35862248 DOI: 10.1021/acs.joc.2c01051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Syntheses of two natural products derived from the ent-kaurene kaurenoic acid are described for the first time using regio- and diastereoselective oxidations. Palladium- and manganese-mediated oxidations were used to accomplish the syntheses of two ent-beyerane metabolites. The use of the White-Gormisky-Zhao catalyst Mn(CF3-PDP) enabled the first application of a nondirected metal-catalyzed oxidation in an unactivated C-H bond in a total synthesis.
Collapse
Affiliation(s)
- Victor C S Santana
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Eduardo C S Rocha
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Julian C S Pavan
- Research Center in Exact and Technological Sciences, University of Franca, 14404-600 Franca, SP, Brazil
| | - Vladimir C G Heleno
- Research Center in Exact and Technological Sciences, University of Franca, 14404-600 Franca, SP, Brazil
| | - Emilio C de Lucca
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
13
|
Hui C, Wang Z, Xie Y, Liu J. Contemporary synthesis of bioactive cyclobutane natural products. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|