1
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
2
|
Li Z, Jiao J, Fu W, Gao K, Peng X, Wang Z, Zhuo H, Yang C, Yang M, Chang G, Yang L, Zheng X, Yan Y, Chen F, Zhang M, Meng Z, Shang X. Integration of Perylene Diimide into a Covalent Organic Framework for Photocatalytic Oxidation. Angew Chem Int Ed Engl 2024; 63:e202412977. [PMID: 39079914 DOI: 10.1002/anie.202412977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Indexed: 11/05/2024]
Abstract
Perylene diimides (PDIs) have garnered considerable attention due to their immense potential in photocatalysis. However, manipulating the molecular packing within their aggregates and enhancing the efficiency of photogenerated carrier recombination remain significant challenges. In this study, we demonstrate the incorporation of a PDI unit into a covalent organic framework (COF), named PDI-PDA, by linking an ortho-substituted PDI with p-phenylenediamine (PDA) to control its intermolecular aggregation. The incorporation enables precise modulation of electron-transfer dynamics, leading to a ten-fold increase in the efficiency of photocatalytic oxidation of thioether to sulfoxide with PDI-PDA compared to the PDI molecular counterpart, with yields exceeding 90 %. Electron property studies and density functional theory calculations show that the PDI-PDA with its well-defined crystal structure, enhances π-π stacking and lowers the electron transition barrier. Moreover, the strong electron-withdrawing ability of the PDI unit promotes the spatial separation of the valency band maximum and conduction band minimum of PDI-PDA, suppressing the rapid recombination of photogenerated electron-hole pairs and improving the charge-separation efficiency to give high photocatalytic efficiency. This study provides a brief but effective way for improving the photocatalytic efficiency of commonly used PDI-based dyes by integrating them into a framework skeleton.
Collapse
Affiliation(s)
- Zhenping Li
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Junqiang Jiao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ke Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xinyuan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhiwei Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Huagui Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chao Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mingyu Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Gang Chang
- Instrumental Analysis Center of, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xinglong Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zheng Meng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaobo Shang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Sun MY, Cheung SC, Wang XZ, Jin JK, Guo J, Li D, He J. Structural Reassignment of Covalent Organic Framework-Supported Palladium Species: Heterogenized Palladacycles as Efficient Catalysts for Sustainable C-H Activation. ACS CENTRAL SCIENCE 2024; 10:1848-1860. [PMID: 39463833 PMCID: PMC11503496 DOI: 10.1021/acscentsci.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024]
Abstract
Recent decades have witnessed remarkable progress in ligand-promoted C-H activation with palladium catalysts. While a number of transformations have been achieved with a fairly broad substrate scope, the general requirements for high palladium loadings and enormous challenges in catalyst recycling severely limit the practical applications of C-H activation methodologies in organic synthesis. Herein, we incorporate N,C-ligand-chelated palladacycles into rigid, porous, and crystalline covalent organic frameworks for the C-H arylation of indole and pyrrole derivatives. These heterogeneous palladium catalysts exhibit superior stability and recyclability compared to their homogeneous counterparts. We not only produce several highly reactive palladacycles embedded on new framework supports to facilitate C-H activation/C-C bond-forming reactions but also reassign heterogenized palladium species on frameworks containing a benzaldehyde-derived imine moiety as imine-based palladacycles via comprehensive characterization. Our findings provide guidance for the rational design of framework-supported metallacycles in the development of heterogeneous transition-metal catalysis.
Collapse
Affiliation(s)
- Meng-Ying Sun
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Sheung Chit Cheung
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Xue-Zhi Wang
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Ji-Kang Jin
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Jun Guo
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| | - Dan Li
- College
of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory
of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Jian He
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
- State
Key Laboratory of Synthetic Chemistry, The
University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
4
|
Wu J, Tan X, Wu W, Jiang H. Palladium-catalyzed cascade of aza-Wacker and Povarov reactions of aryl amines and 1,6-dienes for hexahydro-cyclopenta[b]quinoline framework. Nat Commun 2024; 15:6776. [PMID: 39117681 PMCID: PMC11310316 DOI: 10.1038/s41467-024-51173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
Palladium catalyzed tandem reaction represents a one-pot synthetic approach to efficiently synthesize complex functionalized molecules while reducing synthetic steps, aligning with the principles of green chemistry. However, achieving a direct cascade of the aza-Wacker and Povarov reactions in one-pot synthesis presents a challenge due to substrate compatibility issues between the two reactions. In this work, we describe an aza-Wacker/Povarov reaction employing a highly electrophilic palladium catalyst, which effectively converts anilines and 1,6-dienes into hexahydro-cyclopenta[b]quinolines. The optimized conditions yield up to 79%, with a diastereoselectivity > 20:1. Substrate range testing reveals compatibility with various sensitive functional groups, and successful late-stage modifications are performed on several natural products and drug molecules, demonstrating the versatility and practicality of the method. Additionally, a preliminary investigation into the reaction mechanism suggests an aza-Wacker process followed by a Povarov process.
Collapse
Affiliation(s)
- Jiahao Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xiangwen Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
5
|
Yu SC, Li X, Cheng L, Liu L. Constrution of Quinazoline-Linked Covalent Organic Frameworks via a Multicomponent Reaction for Photocatalysis. Chemistry 2024; 30:e202400668. [PMID: 38822692 DOI: 10.1002/chem.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Quinazoline (Qz)-linked covalent organic frameworks (COFs) have been constructed via a three-component reaction of ortho-acylanilines, benzaldehydes and NH4OAc. The structure of Qz-COFs has been confirmed by solid-state nuclear magnetic resonance spectroscopy, Fourier transform infrared and powder X-ray diffraction patterns. The Qz-COFs possess high chemical stability, showing good endurance to strong acid, strong base, oxidant, reductant and other conditions. Particularly, Qz-COF-3 can catalyze the aerobic photooxidation of toluene and other compounds containing C(sp3)-H bonds.
Collapse
Affiliation(s)
- Song-Chen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohu Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
6
|
Li M, Han B, Li S, Zhang Q, Zhang E, Gong L, Qi D, Wang K, Jiang J. Constructing 2D Phthalocyanine Covalent Organic Framework with Enhanced Stability and Conductivity via Interlayer Hydrogen Bonding as Electrocatalyst for CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310147. [PMID: 38377273 DOI: 10.1002/smll.202310147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Fabricating COFs-based electrocatalysts with high stability and conductivity still remains a great challenge. Herein, 2D polyimide-linked phthalocyanine COF (denoted as NiPc-OH-COF) is constructed via solvothermal reaction between tetraanhydrides of 2,3,9,10,16,17,23,24-octacarboxyphthalocyaninato nickel(II) and 2,5-diamino-1,4-benzenediol (DB) with other two analogous 2D COFs (denoted as NiPc-OMe-COF and NiPc-H-COF) synthesized for reference. In comparison with NiPc-OMe-COF and NiPc-H-COF, NiPc-OH-COF exhibits enhanced stability, particularly in strong NaOH solvent and high conductivity of 1.5 × 10-3 S m-1 due to the incorporation of additional strong interlayer hydrogen bonding interaction between the O-H of DB and the hydroxy "O" atom of DB in adjacent layers. This in turn endows the NiPc-OH-COF electrode with ultrahigh CO2-to-CO faradaic efficiency (almost 100%) in a wide potential range from -0.7 to -1.1 V versus reversible hydrogen electrode (RHE), a large partial CO current density of -39.2 mA cm-2 at -1.1 V versus RHE, and high turnover number as well as turnover frequency, amounting to 45 000 and 0.76 S-1 at -0.80 V versus RHE during 12 h lasting measurement.
Collapse
Affiliation(s)
- Mingrun Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Senzhi Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qi Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Enhui Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
7
|
Zhan Z, Liu Y, Wang W, Du G, Cai S, Wang P. Atomic-level imaging of beam-sensitive COFs and MOFs by low-dose electron microscopy. NANOSCALE HORIZONS 2024; 9:900-933. [PMID: 38512352 DOI: 10.1039/d3nh00494e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Electron microscopy, an important technique that allows for the precise determination of structural information with high spatiotemporal resolution, has become indispensable in unravelling the complex relationships between material structure and properties ranging from mesoscale morphology to atomic arrangement. However, beam-sensitive materials, particularly those comprising organic components such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), would suffer catastrophic damage from the high energy electrons, hindering the determination of atomic structures. A low-dose approach has arisen as a possible solution to this problem based on the integration of advancements in several aspects: electron optical system, detector, image processing, and specimen preservation. This article summarizes the transmission electron microscopy characterization of MOFs and COFs, including local structures, host-guest interactions, and interfaces at the atomic level. Revolutions in advanced direct electron detectors, algorithms in image acquisition and processing, and emerging methodology for high quality low-dose imaging are also reviewed. Finally, perspectives on the future development of electron microscopy methodology with the support of computer science are presented.
Collapse
Affiliation(s)
- Zhen Zhan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Yuxin Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Weizhen Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Guangyu Du
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Songhua Cai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Peng Wang
- Department of Physics, University of Warwick, CV4 7AL, Coventry, UK.
| |
Collapse
|
8
|
Prieto T, Ponte C, Guntermann R, Medina DD, Salonen LM. Synthetic Strategies to Extended Aromatic Covalent Organic Frameworks. Chemistry 2024:e202401344. [PMID: 38771916 DOI: 10.1002/chem.202401344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
π-Conjugated materials are highly attractive owing to their unique optical and electronic properties. Covalent organic frameworks (COFs) offer a great opportunity for precise arrangement of building units in a π-conjugated crystalline matrix and tuning of the properties through choice of functionalities or post-synthetic modification. With this review, we aim at summarizing both the most representative as well as emerging strategies for the synthesis of π-conjugated COFs. We give examples of direct synthesis using large, π-extended building blocks. COFs featuring fully conjugated linkages such as vinylene, pyrazine, and azole are discussed. Then, post-synthetic modification methods that result in the extension of the COF π-system are reviewed. Throughout, mechanistic insights are presented when available. In the context of their utilization as film devices, we conduct a concise survey of the prominent COF layer deposition techniques reported and their aptness for the deposition of fused aromatic systems.
Collapse
Affiliation(s)
- Tania Prieto
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310, Vigo, Spain
| | - Clara Ponte
- Nanochemistry Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330, Braga, Portugal
- CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Roman Guntermann
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians University (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Dana D Medina
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians University (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Laura M Salonen
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310, Vigo, Spain
- Nanochemistry Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330, Braga, Portugal
| |
Collapse
|
9
|
Tian PJ, Han XH, Qi QY, Zhao X. An Azulene-Based Crystalline Porous Covalent Organic Framework for Efficient Photothermal Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307635. [PMID: 38105336 DOI: 10.1002/smll.202307635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Indexed: 12/19/2023]
Abstract
The designed synthesis of a crystalline azulene-based covalent organic framework (COF-Azu-TP) is presented and its photothermal property is investigated. Azulene, a distinctive 5-7 fused ring non-benzenoid aromatic compound with a large intramolecular dipole moment and unique photophysical characteristics, is introduced as the key feature in COF-Azu-TP. The incorporation of azulene moiety imparts COF-Azu-TP with broad-spectrum light absorption capability and interlayer dipole interactions, which makes COF-Azu-TP a highly efficient photothermal conversion material. Its polyurethane (PU) composite exhibits a solar-to-vapor conversion efficiency (97.2%) and displays a water evaporation rate (1.43 kg m-2 h-1) under one sun irradiation, even at a very low dosage of COF-Azu-TP (2.2 wt%). Furthermore, COF-Azu-TP is utilized as a filler in a polylactic acid (PLA)/polycaprolactone (PCL) composited shape memory material, enabling rapid shape recovery under laser stimulation. A comparison study with a naphthalene-based COF isomer further emphasizes the crucial role of azulene in enhancing photothermal conversion efficiency. This study demonstrates the significance of incorporating specific building blocks into COFs for the development of functional porous materials with enhanced properties, paving the way for future applications in diverse fields.
Collapse
Affiliation(s)
- Peng-Ju Tian
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiang-Hao Han
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
10
|
Zadehnazari A, Khosropour A, Altaf AA, Rosen AS, Abbaspourrad A. Tetrazine-Linked Covalent Organic Frameworks With Acid Sensing and Photocatalytic Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311042. [PMID: 38140890 DOI: 10.1002/adma.202311042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The first synthesis and comprehensive characterization of two vinyl tetrazine-linked covalent organic frameworks (COF), TA-COF-1 and TA-COF-2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2 g-1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light-driven applications. These advantages enable TA-COFs to act as reusable metal-free photocatalysts in the arylboronic acids oxidation and light-induced coupling of benzylamines. In addition, these TA-COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3 vapor. Further, the TA-COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA-COFs can also degrade 5-nitro-1,2,4-triazol-3-one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight-driven photocatalytic process; thus, revealing dual functionality of the protonated TA-COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF-based materials, facilitating advances in catalysis, sensing, and other related fields.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ataf Ali Altaf
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Andrew S Rosen
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
12
|
Wang JR, Song K, Luan TX, Cheng K, Wang Q, Wang Y, Yu WW, Li PZ, Zhao Y. Robust links in photoactive covalent organic frameworks enable effective photocatalytic reactions under harsh conditions. Nat Commun 2024; 15:1267. [PMID: 38341421 DOI: 10.1038/s41467-024-45457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Developing heterogeneous photocatalysts for the applications in harsh conditions is of high importance but challenging. Herein, by converting the imine linkages into quinoline groups of triphenylamine incorporated covalent organic frameworks (COFs), two photosensitive COFs, namely TFPA-TAPT-COF-Q and TFPA-TPB-COF-Q, are successfully constructed. The obtained quinoline-linked COFs display improved stability and photocatalytic activity, making them suitable photocatalysts for photocatalytic reactions under harsh conditions, as verified by the recyclable photocatalytic reactions of organic acid involving oxidative decarboxylation and organic base involving benzylamine coupling. Under strong oxidative condition, the quinoline-linked COFs show a high efficiency up to 11831.6 μmol·g-1·h-1 and a long-term recyclable usability for photocatalytic production of H2O2, while the pristine imine-linked COFs are less catalytically active and easily decomposed in these harsh conditions. The results demonstrate that enhancing the linkage robustness of photoactive COFs is a promising strategy to construct heterogeneous catalysts for photocatalytic reactions under harsh conditions.
Collapse
Affiliation(s)
- Jia-Rui Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Ke Cheng
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Qiurong Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, PR China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
| |
Collapse
|
13
|
Hao M, Xie Y, Lei M, Liu X, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X. Pore Space Partition Synthetic Strategy in Imine-linked Multivariate Covalent Organic Frameworks. J Am Chem Soc 2024; 146:1904-1913. [PMID: 38133928 DOI: 10.1021/jacs.3c08160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Partitioning the pores of covalent organic frameworks (COFs) is an attractive strategy for introducing microporosity and achieving new functionality, but it is technically challenging to achieve. Herein, we report a simple strategy for partitioning the micropores/mesopores of multivariate COFs. Our approach relies on the predesign and synthesis of multicomponent COFs through imine condensation reactions with aldehyde groups anchored in the COF pores, followed by inserting additional symmetric building blocks (with C2 or C3 symmetries) as pore partition agents. This approach allowed tetragonal or hexagonal pores to be partitioned into two or three smaller micropores, respectively. The synthesized library of pore-partitioned COFs was then applied for the capture of iodine pollutants (i.e., I2 and CH3I). This rich inventory allowed deep exploration of the relationships between the COF adsorbent composition, pore architecture, and adsorption capacity for I2 and CH3I capture under wide-ranging conditions. Notably, one of our developed pore-partitioned COFs (COF 3-2P) exhibited greatly enhanced dynamic I2 and CH3I adsorption performances compared to its parent COF (COF 3) in breakthrough tests, setting a new benchmark for COF-based adsorbents. Results present an effective design strategy toward functional COFs with tunable pore environments, functions, and properties.
Collapse
Affiliation(s)
- Mengjie Hao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Yinghui Xie
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Ming Lei
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | | | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
14
|
Suleman S, Zhang Y, Qian Y, Zhang J, Lin Z, Metin Ö, Meng Z, Jiang HL. Turning on Singlet Oxygen Generation by Outer-Sphere Microenvironment Modulation in Porphyrinic Covalent Organic Frameworks for Photocatalytic Oxidation. Angew Chem Int Ed Engl 2024; 63:e202314988. [PMID: 38016926 DOI: 10.1002/anie.202314988] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Singlet oxygen (1 O2 ) is ubiquitously involved in various photocatalytic oxidation reactions; however, efficient and selective production of 1 O2 is still challenging. Herein, we reported the synthesis of nickel porphyrin-based covalent organic frameworks (COFs) incorporating functional groups with different electron-donating/-withdrawing features on their pore walls. These functional groups established a dedicated outer-sphere microenvironment surrounding the Ni catalytic center that tunes the activity of the COFs for 1 O2 -mediated thioether oxidation. With the increase of the electron-donating ability of functional groups, the modulated outer-sphere microenvironment turns on the catalytic activity from a yield of nearly zero by the cyano group functionalized COF to an excellent yield of 98 % by the methoxy group functionalized one. Electronic property investigation and density-functional theory (DFT) calculations suggested that the distinct excitonic behaviors attributed to the diverse band energy levels and orbital compositions are responsible for the different activities. This study represents the first regulation of generating reactive oxygen species (ROS) based on the strategy of outer-sphere microenvironment modulation in COFs.
Collapse
Affiliation(s)
- Suleman Suleman
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinwei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Önder Metin
- Department of Chemistry, College of Sciences, Koç University, Istanbul, 34450, Türkiye
| | - Zheng Meng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
15
|
Martín-Encinas E, Lopez-Aguileta L, Palacios F, Alonso C. Aza-Povarov Reaction. A Method for the Synthesis of Fused Tetracyclic Chromeno[4,3- d]pyrido[1,2- a]pyrimidines. J Org Chem 2024. [PMID: 38177107 DOI: 10.1021/acs.joc.3c02220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A cornerstone in drug discovery is the development of strategies to provide privileged small molecules with specific structural and stereochemical complexity, allowing access to new potential therapeutic entities. In this work, a new strategy based on the [4 + 2] Povarov reaction involving 1,3-diazadiene was developed. This approach is applied for a straightforward procedure in the preparation of chromeno[4,3-d]pyrido[1,2-a]pyrimidine derivatives, with accessible substrates, 2-aminopyridine and unsaturated aldehydes, and excellent atom economy to obtain four fused ring heterocycles, in a regio- and diastereoselective way.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Leyre Lopez-Aguileta
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Lascaray Research Center, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU). Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| |
Collapse
|
16
|
Wamsley M, Zou S, Zhang D. Advancing Evidence-Based Data Interpretation in UV-Vis and Fluorescence Analysis for Nanomaterials: An Analytical Chemistry Perspective. Anal Chem 2023; 95:17426-17437. [PMID: 37972233 DOI: 10.1021/acs.analchem.3c03490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
UV-vis spectrophotometry and spectrofluorometry are indispensable tools in education, research, and industrial process controls with widespread applications in nanoscience encompassing diverse nanomaterials and fields. Nevertheless, the prevailing spectroscopic interpretations and analyses often exhibit ambiguity and errors, particularly evident in the nanoscience literature. This analytical chemistry Perspective focuses on fostering evidence-based data interpretation in experimental studies of materials' UV-vis absorption, scattering, and fluorescence properties. We begin by outlining common issues observed in UV-vis and fluorescence analysis. Subsequently, we provide a summary of recent advances in commercial UV-vis spectrophotometric and spectrofluorometric instruments, emphasizing their potential to enhance scientific rigor in UV-vis and fluorescence analysis. Furthermore, we propose potential avenues for future developments in spectroscopic instrumentation and measurement strategies, aiming to further augment the utility of optical spectroscopy in nano research for samples where optical complexity surpasses existing tools. Through a targeted focus on the critical issues related to UV-vis and fluorescence properties of nanomaterials, this Perspective can serve as a valuable resource for researchers, educators, and practitioners.
Collapse
Affiliation(s)
- Max Wamsley
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Shengli Zou
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Dongmao Zhang
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| |
Collapse
|
17
|
Ding J, Guan X, Chen X, Nan P, Qiu S, Fang Q. Quantitative Assessment of Crystallinity and Stability in β-Ketoenamine-Based Covalent Organic Frameworks. Chemistry 2023; 29:e202302290. [PMID: 37669904 DOI: 10.1002/chem.202302290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
The design and synthesis of covalent organic frameworks (COFs) with high chemical stability pose significant challenges for practical applications. Although a growing number of robust COFs have been developed and employed for a broad scope of applications, the assessment of COF stability has primarily relied on qualitative descriptions, lacking a rational and quantitative assessment. Herein, a novel assessment method is presented that enables visual and quantitative depiction of COF stability. By analyzing the PXRD patterns of chemically stable β-ketoenamine-based COFs (KEA-COFs), two crystallinity-dependent parameters are identified, the relative intensity (I2θrel ) and the relative area (A2θrel ) of the main peak (2θ), which are expected to establish a standardized criterion for assessing COF crystallinity. Based on these parameters, the crystalline changes after stability tests can be visually presented, which provides a rational and quantitative assessment of their stability. This study not only demonstrates the remarkable chemical stability of KEA-COFs, but also provides valuable insights into the quantitative evaluation of COFs' crystallinity and stability.
Collapse
Affiliation(s)
- Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaohong Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
| | - Pihan Nan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
18
|
Wang X, Liu M, Liu Y, Shang S, Du C, Hong J, Gao W, Hua C, Xu H, You Z, Chen J, Liu Y. Topology-Selective Manipulation of Two-Dimensional Covalent Organic Frameworks. J Am Chem Soc 2023. [PMID: 38010167 DOI: 10.1021/jacs.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The manipulation of topological architectures in two-dimensional (2D) covalent organic framework (COF) materials for different applications is promising but remains a great challenge. Here, we first report the topology-selective synthesis of two distinct varieties of 2DCOFs, imine-based HT-COFs and benzimidazole-fused BI-HT-COFs, by simply altering acid catalysts. To HT-COFs, a superlattice of 1D channel with a persistent triangular shape is formed via Schiff base reaction, while to BI-HT-COFs, a hexagonal lattice structure with a highly conjugated structure and imidazole linkages is constructed due to an imine-based cyclization reaction. The two COFs exhibited marked differences in their bandgap, chemical stability, molecular adsorption, and catalytic activity, which make them have different fields of application. This work not only diversifies the hexaaminotriphenylene-based 2DCOF topologies but also provides vivid examples of structure-property relationships, which would facilitate fundamental research and potential applications of 2DCOFs.
Collapse
Affiliation(s)
- Xinyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Minghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Youxing Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Changsheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiaxin Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunyu Hua
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Helin Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zewen You
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
19
|
Gong Y, Huang S, Lei Z, Wayment L, Chen H, Zhang W. Double-Walled Covalent Organic Frameworks with High Stability. Chemistry 2023; 29:e202302135. [PMID: 37556201 DOI: 10.1002/chem.202302135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Double-walled covalent organic frameworks, consisting of two same building blocks parallel to each other forming ladder-shape linkers, could enhance the stability of the frameworks and increase the density of functional sites, thus making them suitable for various applications. In this study, two double-walled covalent organic frameworks, namely DW-COF-1 and DW-COF-2, were successfully synthesized via imine condensation. The resulting DW-COFs exhibited a honeycomb topology, high crystallinity and stability. Particularly, DW-COF-2 showed excellent resistance toward boiling water, strong acid, and strong base, due to its double-walled structure, which limits the exposure of labile imine bonds to external chemical environments. The DW-COFs showed high porosity near 900 m2 /g, making them suitable for gas storage/separation. The selective gas adsorption experiments showed that at 273 K and 1 atm pressure, DW-COF-1 and DW-COF-2 exhibited a good IAST selectivity towards CO2 /N2 (15/85) adsorption, with selectivity values of 121.3 and 56.4 for CO2 over N2 , respectively.
Collapse
Affiliation(s)
- Yu Gong
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Lacey Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| |
Collapse
|
20
|
Zhou W, Gan J, Li H, Wang C. ZnCl 2-Promoted Three-Component Reaction of 2-Aminochromenones, Aromatic Aldehydes, and Quinone Monoketals: Access to 5,6-Dihydro-12 H-chromeno[2,3- c]isoquinolin-12-one Derivatives. J Org Chem 2023; 88:14767-14774. [PMID: 37820027 DOI: 10.1021/acs.joc.3c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A three-component reaction of 2-amino-4H-chromen-4-ones, aromatic aldehydes, and 4,4-dialkoxycyclohexa-2,5-dien-1-ones for the concise synthesis of chromeno[2,3-c]dihydroisoquinoline derivatives has been investigated. This reaction involved consecutive ZnCl2-promoted Micheal addition and intramolecular Friedel-Crafts alkylation. This synthetic protocol offered several advantages, including the readily accessible starting materials, good functional group tolerance, and simplicity of operation. Additionally, the structures of products obtained were determined based on X-ray diffraction studies.
Collapse
Affiliation(s)
- Wenyan Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Jianbo Gan
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Haiwen Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Street, Yangzhou 225002, P. R. China
| |
Collapse
|
21
|
Dong P, Xu X, Luo R, Yuan S, Zhou J, Lei J. Postsynthetic Annulation of Three-Dimensional Covalent Organic Frameworks for Boosting CO 2 Photoreduction. J Am Chem Soc 2023. [PMID: 37421363 DOI: 10.1021/jacs.3c03897] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Three-dimensional covalent organic frameworks (3D COFs), with interconnected pores and exposed functional groups, provide new opportunities for the design of advanced functional materials through postsynthetic modification. Herein, we demonstrate the successful postsynthetic annulation of 3D COFs to construct efficient CO2 reduction photocatalysts. Two 3D COFs, NJU-318 and NJU-319Fe, were initially constructed by connecting hexaphenyl-triphenylene units with pyrene- or Fe-porphyrin-based linkers. Subsequently, the hexaphenyl-triphenylene moieties within the COFs were postsynthetically transformed into π-conjugated hexabenzo-trinaphthylene (pNJU-318 and pNJU-319Fe) to enhance visible light absorption and CO2 photoreduction activity. The optimized photocatalyst, pNJU-319Fe, shows a CO yield of 688 μmol g-1, representing a 2.5-fold increase compared to that of unmodified NJU-319Fe. Notably, the direct synthesis of hexabenzo-trinaphthylene-based COF catalysts was unsuccessful due to the low solubility of conjugated linkers. This study not only provides an effective method to construct photocatalysts but also highlights the unlimited tunability of 3D COFs through structural design and postsynthetic modification.
Collapse
Affiliation(s)
- Pengfei Dong
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinyu Xu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuai Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Zhang H, Wei W, Zhang KAI. Emerging conjugated polymers for heterogeneous photocatalytic chemical transformation. Chem Commun (Camb) 2023. [PMID: 37416940 DOI: 10.1039/d3cc02081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In recent decades, the efficient utilization of solar energy through heterogeneous photocatalytic chemical transformation has attracted much attention. As emerging metal-free, pure organic and heterogeneous photocatalysts, π-conjugated polymers (CPs) have been used in visible-light-driven chemical transformations due to their stability, high specific surface area, metal-free nature, and high structural designability. In this review, we summarize the synthesis protocols and design strategies for efficient CP-based photocatalysts based on the photocatalytic mechanisms. Then we highlight the key progress in light-driven chemical transformation using CPs developed by our group. Finally, we present the outlook and possible challenges for future progress of the field.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Materials Science, Fudan University, Songhu Road 2005, Shanghai 200438, P. R. China.
| | - Wenxin Wei
- Department of Materials Science, Fudan University, Songhu Road 2005, Shanghai 200438, P. R. China.
| | - Kai A I Zhang
- Department of Materials Science, Fudan University, Songhu Road 2005, Shanghai 200438, P. R. China.
| |
Collapse
|
23
|
Masdeu C, de Los Santos JM, Palacios F, Alonso C. The Intramolecular Povarov Tool in the Construction of Fused Nitrogen-Containing Heterocycles. Top Curr Chem (Cham) 2023; 381:20. [PMID: 37249641 DOI: 10.1007/s41061-023-00428-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Nitrogen heterocycles are part of the structure of natural products and agents with important biological activity, such as antiviral, antibiotic, and antitumor drugs. For this reason, heterocyclic compounds are one of today's most desirable synthetic targets and the Povarov reaction is a powerful synthetic tool for the construction of highly functionalized heterocyclic systems. This process involves an aromatic amine, a carbonyl compound, and an olefin or acetylene to give rise to the formation of a nitrogen-containing heterocycle. This review illustrates advances in the synthetic aspects of the intramolecular Povarov reaction for the construction of intricate nitrogen-containing polyheterocyclic compounds. This original review presents research done in this field, with references to important works by internationally relevant research groups on this current topic, covering the literature from 1992 to 2022. The intramolecular Povarov reactions are described here according to the key processes involved, using different combinations of aromatic or heteroaromatic amines, and aliphatic, aromatic, or heteroaromatic aldehydes. Some catalytic reactions promoted by transition metals are detailed, as well as the oxidative Povarov reaction and some asymmetric intramolecular Povarov processes.
Collapse
Affiliation(s)
- Carme Masdeu
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Jesús M de Los Santos
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
24
|
Yang H, Hao M, Xie Y, Liu X, Liu Y, Chen Z, Wang X, Waterhouse GIN, Ma S. Tuning Local Charge Distribution in Multicomponent Covalent Organic Frameworks for Dramatically Enhanced Photocatalytic Uranium Extraction. Angew Chem Int Ed Engl 2023. [DOI: doi.org/10.1002/ange.202303129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/25/2023]
Affiliation(s)
- Hui Yang
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Mengjie Hao
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Yinghui Xie
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Xiaolu Liu
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Yanfang Liu
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | - Xiangke Wang
- College of Environmental Science and Engineering North China Electric Power University Beijing 102206 P.R. China
| | | | - Shengqian Ma
- Department of Chemistry University of North Texas Denton TX-76201 USA
| |
Collapse
|
25
|
Nan J, Huang G, Liu S, Wang J, Ma Y, Luan X. In(OTf) 3-catalyzed reorganization/cycloaddition of two imine units and subsequent modular assembly of acridinium photocatalysts. Chem Sci 2023; 14:5160-5166. [PMID: 37206409 PMCID: PMC10189902 DOI: 10.1039/d3sc00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023] Open
Abstract
Herein, we disclose a novel reorganization/cycloaddition between two imine units catalyzed by In(OTf)3 Lewis acid that differs from the well-known [4 + 2] cycloaddition version via the Povarov reaction. By means of this unprecedented imine chemistry, a collection of synthetically useful dihydroacridines has been synthesized. Notably, the obtained products give rise to a series of structurally novel and fine-tuneable acridinium photocatalysts, offering a heuristic paradigm for synthesis and efficiently facilitating several encouraging dihydrogen coupling reactions.
Collapse
Affiliation(s)
- Jiang Nan
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Guanjie Huang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Shilei Liu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Jing Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yangmin Ma
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710021 China
| |
Collapse
|
26
|
Volkov A, Mi J, Lalit K, Chatterjee P, Jing D, Carnahan SL, Chen Y, Sun S, Rossini AJ, Huang W, Stanley LM. General Strategy for Incorporation of Functional Group Handles into Covalent Organic Frameworks via the Ugi Reaction. J Am Chem Soc 2023; 145:6230-6239. [PMID: 36892967 DOI: 10.1021/jacs.2c12440] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The library of imine-linked covalent organic frameworks (COFs) has grown significantly over the last two decades, featuring a variety of morphologies, pore sizes, and applications. An array of synthetic methods has been developed to expand the scope of the COF functionalities; however, most of these methods were designed to introduce functional scaffolds tailored to a specific application. Having a general approach to diversify COFs via late-stage incorporation of functional group handles would greatly facilitate the transformation of these materials into platforms for a variety of useful applications. Herein, we report a general strategy to introduce functional group handles in COFs via the Ugi multicomponent reaction. To demonstrate the versatility of this approach, we have synthesized two COFs with hexagonal and kagome morphologies. We then introduced azide, alkyne, and vinyl functional groups, which could be readily utilized for a variety of post-synthetic modifications. This facile approach enables the functionalization of any COFs containing imine linkages.
Collapse
Affiliation(s)
- Alexander Volkov
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Jiashan Mi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Kanika Lalit
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Puranjan Chatterjee
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Dapeng Jing
- Materials Analysis and Research Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Scott L Carnahan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Yunhua Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Simin Sun
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- U.S. Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Levi M Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
27
|
Pang H, Huang D, Zhu Y, Zhao X, Xiang Y. One-pot cascade construction of nonsubstituted quinoline-bridged covalent organic frameworks. Chem Sci 2023; 14:1543-1550. [PMID: 36794200 PMCID: PMC9906769 DOI: 10.1039/d2sc06044b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023] Open
Abstract
Irreversible locking of imine linkages into stable linkages represents a promising strategy to improve the robustness and functionality of covalent organic frameworks (COFs). We report, for the first time, a multi-component one-pot reaction (OPR) for imine annulation to construct highly stable nonsubstituted quinoline-bridged COFs (NQ-COFs), and that equilibrium regulation of reversible/irreversible cascade reactions by addition of MgSO4 desiccant is crucial to achieve high conversion efficiency and crystallinity. The higher long-range order and surface area of NQ-COFs synthesized by this OPR than those of the reported two-step post-synthetic modification (PSM) facilitate charge carrier transfer and photogeneration ability of superoxide radicals (O2˙-), which makes these NQ-COFs more efficient photocatalysts for O2˙- mediated synthesis of 2-benzimidazole derivatives. The general applicability of this synthetic strategy is demonstrated by fabricating 12 other crystalline NQ-COFs with a diversity of topologies and functional groups.
Collapse
Affiliation(s)
- Huaji Pang
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan Hubei 430070 China .,College of Resources and Environment, Huazhong Agricultural University 430070 Wuhan P. R. China
| | - Dekang Huang
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Yanqiu Zhu
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan Hubei 430070 China .,College of Resources and Environment, Huazhong Agricultural University 430070 Wuhan P. R. China
| | - Xiaodong Zhao
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan Hubei 430070 China .,College of Resources and Environment, Huazhong Agricultural University 430070 Wuhan P. R. China
| | - Yonggang Xiang
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan Hubei 430070 China .,College of Resources and Environment, Huazhong Agricultural University 430070 Wuhan P. R. China
| |
Collapse
|
28
|
Porous organic polymers: a progress report in China. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
29
|
Wu C, Xia L, Xia S, Van der Bruggen B, Zhao Y. Advanced Covalent Organic Framework-Based Membranes for Recovery of Ionic Resources. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206041. [PMID: 36446638 DOI: 10.1002/smll.202206041] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Membrane technology has shown a viable potential in conversion of liquid-waste or high-salt streams to fresh waters and resources. However, the non-adjustability pore size of traditional membranes limits the application of ion capture due to their low selectivity for target ions. Recently, covalent organic frameworks (COFs) have become a promising candidate for construction of advanced ion separation membranes for ion resource recovery due to their low density, large surface area, tunable channel structure, and tailored functionality. This tutorial review aims to analyze and summarize the progress in understanding ion capture mechanisms, preparation processes, and applications of COF-based membranes. First, the design principles for target ion selectivity are illustrated in terms of theoretical simulation of ions transport in COFs, and key properties for ion selectivity of COFs and COF-based membranes. Next, the fabrication methods of diverse COF-based membranes are classified into pure COF membranes, COF continuous membranes, and COF mixed matrix membranes. Finally, current applications of COF-based membranes are highlighted: desalination, extraction, removal of toxic metal ions, radionuclides and lithium, and acid recovery. This review presents promising approaches for design, preparation, and application of COF-based membranes in ion selectivity for recovery of ionic resources.
Collapse
Affiliation(s)
- Chao Wu
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lei Xia
- Department of Earth and Environmental Sciences, KU Leuven, Kasteelpark Arenberg 20 bus 2459, Leuven, B-3001, Belgium
| | - Shengji Xia
- Department of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| |
Collapse
|
30
|
Guan Q, Zhou LL, Dong YB. Construction of Covalent Organic Frameworks via Multicomponent Reactions. J Am Chem Soc 2023; 145:1475-1496. [PMID: 36646043 DOI: 10.1021/jacs.2c11071] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
31
|
Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat Rev Chem 2022; 6:881-898. [PMID: 37117702 DOI: 10.1038/s41570-022-00437-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
Covalent organic frameworks (COFs) are porous crystalline polymers that result from the formation of covalent bonds between precisely assembled organic units. Linkage chemistry is a crucial factor in the controllable synthesis and resulting physicochemical properties of COFs. Imine linkages are popular in the formation of polyfunctional two-dimensional (2D) COFs because they are formed easily with structural and functional diversity. There has been much recent interest in expanding beyond this to COFs with imine-derived linkages. This review highlights the development of chemistry to modify and prepare derivatives of imines within 2D COFs. We discuss the derivation of imine bonds via covalent and noncovalent bonding and the properties and potential applications of the resulting materials in order to provide a better understanding of the relationship between covalent linkages and overall performance for 2D COF materials.
Collapse
|
32
|
Zhao X, Pang H, Huang D, Liu G, Hu J, Xiang Y. Construction of Ultrastable Nonsubstituted Quinoline‐Bridged Covalent Organic Frameworks via Rhodium‐Catalyzed Dehydrogenative Annulation. Angew Chem Int Ed Engl 2022; 61:e202208833. [DOI: 10.1002/anie.202208833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaodong Zhao
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Huaji Pang
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Dekang Huang
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Gang Liu
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Jianxiang Hu
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Yonggang Xiang
- Department of Chemistry, College of Science Huazhong Agricultural University Wuhan Hubei 430070 China
| |
Collapse
|
33
|
Qiu TY, Zhao YN, Tang WS, Tan HQ, Sun HY, Kang ZH, Zhao X, Li YG. Smart Covalent Organic Framework with Proton-Initiated Switchable Photocatalytic Aerobic Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tian-Yu Qiu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ying-Nan Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wen-Si Tang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hui-Ying Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhen-Hui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Xia Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
34
|
Zhao X, Pang H, Huang D, Liu G, Hu J, Xiang Y. Construction of Ultrastable Nonsubstituted Quinoline‐Bridged Covalent Organic Frameworks via Rhodium‐Catalyzed Dehydrogenative Annulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaodong Zhao
- Huazhong Agriculture University: Huazhong Agricultural University College of Science CHINA
| | - Huaji Pang
- Huazhong Agriculture University: Huazhong Agricultural University College of Science CHINA
| | - Dekang Huang
- Huazhong Agriculture University: Huazhong Agricultural University College of Science CHINA
| | - Gang Liu
- Huazhong Agriculture University: Huazhong Agricultural University College of Science CHINA
| | - Jianxiang Hu
- Huazhong Agriculture University: Huazhong Agricultural University College of Science CHINA
| | - Yonggang Xiang
- College of Science Huazhong Agricultural University Shizishan Avenue 430070 Wuhan CHINA
| |
Collapse
|
35
|
Jiménez-Aberásturi X, Palacios F, de Los Santos JM. Sc(OTf) 3-Mediated [4 + 2] Annulations of N-Carbonyl Aryldiazenes with Cyclopentadiene to Construct Cinnoline Derivatives: Azo-Povarov Reaction. J Org Chem 2022; 87:11583-11592. [PMID: 35972474 PMCID: PMC9447289 DOI: 10.1021/acs.joc.2c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We disclose the first accomplishment of the azo-Povarov reaction involving Sc(OTf)3-catalyzed [4 + 2] annulations of N-carbonyl aryldiazenes with cyclopentadiene in chloroform, in which N-carbonyl aryldiazenes act as 4π-electron donors. Hence, this protocol offers a rapid access to an array of cinnoline derivatives in moderate to good yields for substrates over a wide scope. The synthetic potential of the protocol was achieved by the gram-scale reaction and further derivatization of the obtained polycyclic product.
Collapse
Affiliation(s)
- Xabier Jiménez-Aberásturi
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria 01006, Spain
| | - Francisco Palacios
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria 01006, Spain
| | - Jesús M de Los Santos
- Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria 01006, Spain
| |
Collapse
|
36
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
37
|
Yue JY, Song LP, Ding XL, Wang YT, Yang P, Ma Y, Tang B. Ratiometric Fluorescent pH Sensor Based on a Tunable Multivariate Covalent Organic Framework. Anal Chem 2022; 94:11062-11069. [PMID: 35880804 DOI: 10.1021/acs.analchem.2c01999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ratiometric detection of pH is always significant in environmental regulation, medical diagnosis, synthetic chemistry, and beyond. The construction of practical ratiometric pH sensors with reusability is still challenging. Herein, by exploiting a multivariate strategy, we first synthesized and reported a series of novel three-component covalent organic frameworks (COF-COOHX, X = 33, 50, and 67) through Schiff base reaction between 2-hydroxybenzene-1,3,5-tricarbaldehyde (HTA), 4,4'-diamino-3,3'-biphenyldicarboxylic acid (DBA), and 5,5'-diamino-2,2'-bipyridine (BPY) at various molar ratios (X = [DBA]/([BPY] + [DBA]) × 100 = 33, 50, and 67). COF-COOHX (X = 33, 50, and 67) displayed ratiometric pH sensing performance in acidic conditions with selectivity and repeatability. By tuning the molar ratio of DBA and BPY, the fluorescent properties, linear pH responsive ranges, and pKa values of COF-COOHX (X = 33, 50, and 67) can be regulated. Meanwhile, the two-component COF-COOH0 and COF-COOH100 did not exhibit ratiometric pH detection ability. Moreover, the constructed three ratiometric sensors can be applied to detect pH in drug solutions and carbonated drinks with satisfactory results. This work sheds new light on the design and fabrication of innovative ratiometric fluorescent sensors using COFs.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Xiu-Li Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Yu-Tong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P.R. China
| |
Collapse
|
38
|
Bin B, Ren X, Wang D, Wan L. Lewis Acid Catalyzed Synthesis of Vinylene Linked Two Dimensional Covalent Organic Frameworks. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bai Bin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Rui Ren
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
Feng J, Zhang YJ, Ma SH, Yang C, Wang ZP, Ding SY, Li Y, Wang W. Fused-Ring-Linked Covalent Organic Frameworks. J Am Chem Soc 2022; 144:6594-6603. [PMID: 35380432 DOI: 10.1021/jacs.2c02173] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of linkage chemistry in the research area of covalent organic frameworks (COFs) is fundamentally important for creating robust structures with high crystallinity and diversified functionality. We reach herein a new level of complexity and controllability in linkage chemistry by achieving the first synthesis of fused-ring-linked COFs. A series of bicyclic pyrano[4,3-b]pyridine COFs have been constructed via a cascade protocol involving Schiff-base condensation, intramolecular [4 + 2] cycloaddition, and dehydroaromatization. With a broad scope of Brønsted or Lewis acids as the catalyst, the designed monomers, that is, O-propargylic salicylaldehydes and multitopic anilines, were converted into the fused-ring-linked frameworks in a one-pot fashion. The obtained COFs exhibited excellence in terms of purity, stability, and crystallinity, as comprehensively characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy, powder X-ray diffraction, high-resolution transmission electron microscopy, and so on. Specifically, the highly selective formation (>94%) of pyrano[4,3-b]pyridine linkage was verified by quantitative NMR measurements combined with 13C-labeling synthesis. Moreover, the fused-ring linkage possesses fully locked conformation, which benefits to the high crystallinity observed for these COFs. Advancing the linkage chemistry from the formation of solo bonds or single rings to that of fused rings, this study has opened up new possibilities for the concise construction of sophisticated COF structures with high controllability.
Collapse
Affiliation(s)
- Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya-Jie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Sheng-Hua Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Chen Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhi-Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|