1
|
Kishimoto S. Non-enzymatic reactions in biogenesis of fungal natural products. J Nat Med 2024; 78:467-473. [PMID: 38517623 PMCID: PMC11101550 DOI: 10.1007/s11418-024-01797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Fungi have long been regarded as abundant sources of natural products (NPs) exhibiting significant biological activities. Decades of studies on the biosynthesis of fungal NPs revealed that most of the biosynthetic steps are catalyzed by sophisticated enzymes encoded in biosynthetic gene clusters, whereas some reactions proceed without enzymes. These non-enzymatic reactions complicate biosynthetic analysis of NPs and play important roles in diversifying the structure of the products. Therefore, knowledge on the non-enzymatic reactions is important for elucidating the biosynthetic mechanism. This review focuses on non-enzymatic reactions we recently encountered during biosynthetic studies of four types of NPs (viridicatins, Sch210972, lentopeptins, and lentofuranine).
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
2
|
Kishimoto S, Minami A, Aoki Y, Matsubara Y, Watanabe S, Watanabe K. Reactive Azlactone Intermediate Drives Fungal Secondary Metabolite Cross-Pathway Generation. J Am Chem Soc 2023; 145:3221-3228. [PMID: 36706030 DOI: 10.1021/jacs.2c13188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pathogenic fungi of Aspergillus section Fumigati are known to produce various secondary metabolites. A reported isolation of a compound with an atypical carbon skeleton called fumimycin from A. fumisynnematus prompted us to examine a related fungus, A. lentulus, for production of similar products. Here we report the isolation of fumimycin and a related new racemic compound we named lentofuranine. Detailed analyses revealed that both compounds were assembled by a nonenzymatic condensation of a polyketide intermediate from the terrein biosynthetic pathway and a highly reactive azlactone intermediate produced by an unrelated nonribosomal peptide synthetase carrying a terminal condensation-like domain. While highly reactive azlactone is commonly used in chemical synthesis, its production by a conventional non-metalloenzyme and employment as a biosynthetic pathway intermediate is unprecedented. The observed unusual carbon skeleton formation is likely due to the reactivity of azlactone. Our finding provides another example of a chemical principle being aptly exploited by a biological system.
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Ayumi Minami
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Yoshimitsu Aoki
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Yuya Matsubara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Shogo Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| |
Collapse
|
3
|
Zhou C, Cao X, Ge Y, Wu X, Zhang Z, Ma Y, Dickschat JS, Wu B. Talaropeptins A and B, Tripeptides with an N- trans-Cinnamoyl Moiety from the Marine-Derived Fungus Talaromyces purpureogenus CX11. JOURNAL OF NATURAL PRODUCTS 2022; 85:2620-2625. [PMID: 36318598 DOI: 10.1021/acs.jnatprod.2c00638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We report the discovery of talaropeptins A (1) and B (2), tripeptides with an unusual 5/6/5 heterocyclic scaffold and an N-trans-cinnamoyl moiety, which were identified from the marine-derived fungus Talaromyces purpureogenus CX11. A bioinformatic analysis of the genome of T. purpureogenus CX11 and gene inactivation revealed that the biosynthesis of talaropeptins involves a nonribosomal peptide synthase gene cluster. Their chemical structures were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configurations of 1 and 2 were established by electronic circular dichroism calculations and Marfey's method. The plausible biosynthesis of 1 and 2 is also proposed on the basis of gene deletion, substrate feeding, and heterologous expression. Compounds 1 and 2 showed moderate antifungal activity against phytopathogenic fungus Fusarium oxysporum with MIC values of 12.5 and 25 μg/mL, respectively.
Collapse
Affiliation(s)
- Chengzeng Zhou
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Xun Cao
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Yichao Ge
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Xiaodan Wu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China
| | - Zunjing Zhang
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Yihan Ma
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Jeroen S Dickschat
- Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Bin Wu
- Ocean College, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2022. [PMID: 35708284 DOI: 10.1039/d2np90019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as chevalinulin A from Aspergillus chevalieri.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, UK, G12 8QQ.
| | | |
Collapse
|
5
|
Abstract
Ergometrine is widely used for the treatment of excessive postpartum uterine bleeding. Claviceps paspali is a common species for industrial production of ergometrine, which is often accompanied by lysergic acid α-hydroxyethylamide (LAH) and lysergic acid amide (LAA). Currently, direct evidence on the biosynthetic mechanism of LAH and LAA from lysergic acid in C. paspali is absent, except that LAH and LAA share the common precursor with ergometrine and LAA is spontaneously transformed from LAH. A comparison of the gene clusters between C. purpurea and C. paspali showed that the latter harbored the additional easO and easP genes. Thus, the knockout of easO and easP in the species should not only improve the ergometrine production but also elucidate the function. In this study, gene knockout of C. paspali by homologous recombination yielded two mutants ∆easOhetero-1 and ∆easPhetero-34 with ergometrine titers of 1559.36 mg∙L−1 and 837.57 mg∙L−1, which were four and two times higher than that of the wild-type control, respectively. While the total titer of LAH and LAA of ∆easOhetero-1 was lower than that of the wild-type control. The Aspergillus nidulans expression system was adopted to verify the function of easO and easP. Heterologous expression in A. nidulans further demonstrated that easO, but not easP, determines the formation of LAA.
Collapse
|
6
|
Homma Y, Sugawara A, Morishita Y, Tsukada K, Ozaki T, Asai T. Discovery of a Cyclic Depsipeptide from Chaetomium mollipilium by the Genome Mining Approach. Org Lett 2022; 24:3504-3509. [PMID: 35543719 DOI: 10.1021/acs.orglett.2c01172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genome mining and bioinformatics analyses allowed us to rationally find a candidate biosynthetic gene cluster for a new cyclic depsipeptide of Chaetomium mollipilium. A heterologous reconstitution of the identified biosynthetic pathway predictably afforded a new cyclic depsipeptide composed of l-leucine, l-tryptophan, and a polyketide moiety. Interestingly, the 10-membered macrocycle structure generated equilibrium to an unprecedented cyclol structure. This study demonstrates the advantage of a synthetic biology method in achieving rational access to new natural products.
Collapse
Affiliation(s)
- Yuto Homma
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Akihiro Sugawara
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yohei Morishita
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kento Tsukada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Taro Ozaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Teigo Asai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|