1
|
Reyna-Campos AO, Ruiz-Villafan B, Macías-Rubalcava ML, Langley E, Rodríguez-Sanoja R, Sánchez S. Heterologous expression of lasso peptides with apparent participation in the morphological development in Streptomyces. AMB Express 2024; 14:97. [PMID: 39225916 PMCID: PMC11371967 DOI: 10.1186/s13568-024-01761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Lasso peptides, ribosomally synthesized and post-translationally modified peptides, are primarily produced by bacteria and some archaea. Streptomyces lasso peptides have been known for their antimicrobial, anticancer, and antiviral properties. However, understanding their role in the morphology and production of secondary metabolites remains limited. We identified a previously unknown lasso peptide gene cluster in the genome of Streptomyces sp. L06. This gene cluster (LASS) produces two distinct lasso peptides, morphosin-1 and - 2. Notably, morphosin-2 is a member of a new subfamily of lasso peptides, with BGCs exhibiting a similar structure. When LASS was expressed in different Streptomyces hosts, it led to exciting phenotypic changes, including the absence of spores and damage in aerial mycelium development. In one of the hosts, LASS even triggered antibiotic formation. These findings open up a world of possibilities, suggesting the potential role of morphosins in shaping Streptomyces' morphological and biochemical development.
Collapse
Affiliation(s)
- Alma Ofelia Reyna-Campos
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, CdMx, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, UNAM. , CdMx, 04510, Mexico
| | - Beatriz Ruiz-Villafan
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, CdMx, Mexico
| | | | - Elizabeth Langley
- Departmento de Investigación Básica, Instituto Nacional de Cancerología, CdMx, 14080, Mexico
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, CdMx, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología del Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, CdMx, Mexico.
| |
Collapse
|
2
|
Vermeulen RR, van Staden ADP, Ollewagen T, van Zyl LJ, Luo Y, van der Donk WA, Dicks LMT, Smith C, Trindade M. Initial Characterization of the Viridisins' Biological Properties. ACS OMEGA 2024; 9:31832-31841. [PMID: 39072090 PMCID: PMC11270710 DOI: 10.1021/acsomega.4c03149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Viridisin A1 and A2 were previously heterologously expressed, purified, and characterized as ribosomally produced and post-translationally modified lanthipeptides. Such lanthipeptide operons are surprisingly common in Gram-negative bacteria, although their expression seems to be predominantly cryptic under laboratory conditions. However, the bioactivity and biological role of most lanthipeptide operons originating from marine-associated Pseudomonadota, such asThalassomonas viridans XOM25T, have not been described. Therefore, marine-associated Gram-negative lanthipeptide operons represent an untapped resource for novel structures, biochemistries, and bioactivities. Here, the upscaled production of viridisin A1 and A2 was performed for (methyl)lanthionine stereochemistry characterization, antibacterial, antifungal, and larval zebrafish behavioral screening. While antimicrobial activity was not observed, the VirBC modification machinery was found to install both dl- and ll-lanthionine stereoisomers. The VdsA1 and VdsA2 peptides induced sedative and stimulatory effects in zebrafish larvae, respectively, which is a bioactivity not previously reported from lanthipeptides. When combined, VdsA1 and VdsA2 counteracted the sedative and stimulatory effects observed when used individually.
Collapse
Affiliation(s)
- Ross Rayne Vermeulen
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| | - Anton Du Preez van Staden
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Tracey Ollewagen
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Leonardo Joaquim van Zyl
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| | - Youran Luo
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | | | - Carine Smith
- Experimental
Research Group, Faculty of Medicine and Health Sciences, Department
of Medicine, Stellenbosch University, Francie van Zijl Drive, Parow 7499, South Africa
| | - Marla Trindade
- Institute
for Microbial Biotechnology and Metagenomics, University of the Western Cape, Level 2 New Life Sciences Building, Robert Sobukwe Rd, Bellville 7535, South Africa
| |
Collapse
|
3
|
Ding W, Wang X, Yin Y, Tao J, Xue Y, Liu W. Characterization of a LanC-free pathway for the formation of an ll-MeLan residue and an alloAviMeCys residue in the newly identified class V lanthipeptide triantimycins. Chem Sci 2024; 15:9266-9273. [PMID: 38903209 PMCID: PMC11186320 DOI: 10.1039/d4sc02302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
The thioether-connected bis-amino acid lanthionine (Lan) residues are class-defining residues of lanthipeptides. Typically, the cyclization step of lanthionine formation, which relies on the addition of a cysteine to an unsaturated dehydroamino acid, is directed either by a standalone cyclase LanC (class I) or by a cyclase domain (class II-IV). However, the pathways of characterized class V members often lack a known cyclase (domain), raising a question on the mechanism by which their multi-macrocycle systems are formed. Herein, we report a new RiPP gene cluster in Streptomyces TN 58, where it encodes the biosynthesis of 3 distinct class V lanthipeptides-termed triantimycins (TAMs). TAM A1∼A3 share an N-terminal ll-MeLan residue, and only TAM A1 contains an additional internal ll-Lan residue. TAM A1 also has a C-terminal (2S, 3R)-S-((Z)-2-aminovinyl)-3-methyl-d-cysteine (alloAviMeCys) residue, which is distinct from the previously reported (2S, 3S)-AviMeCys residue in other RiPPs. Gene deletion, heterologous coexpression, and structural elucidation demonstrated that the cyclization for an ll-MeLan formation occurs spontaneously and is independent of any known lanthionine cyclase. This study provides a new paradigm for lanthionine formation and facilitates genome mining and engineering efforts on RiPPs containing (Me)Lan and (allo)Avi(Me)Cys residues.
Collapse
Affiliation(s)
- Weizhong Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiaofeng Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences 1 Sublane Xiangshan Hangzhou 310024 China
| | - Yu Yin
- Shanghai Jiao Tong University Shanghai 200240 China
| | - Jiang Tao
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Science No. 639 Zhizaoju Road Shanghai 200011 China
| | - Yanqing Xue
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wen Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
4
|
Cheng B, Xue Y, Duan Y, Liu W. Enzymatic Formation of an Aminovinyl Cysteine Residue in Ribosomal Peptide Natural Products. Chempluschem 2024; 89:e202400047. [PMID: 38517224 DOI: 10.1002/cplu.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Indexed: 03/23/2024]
Abstract
The carboxyl-terminal (C-terminal) S-[(Z)-2-aminovinyl]-cysteine (AviCys) analogs have been identified in four families of ribosomally synthesized and post-translationally modified peptides (RiPPs): lanthipeptides, linaridins, thioamitides, and lipolanthines. Within identified biosynthetic pathways, a highly reactive enethiol intermediate, formed through an oxidative decarboxylation catalyzed by a LanD-like flavoprotein, can undergo two types of cyclization: a Michael addition with a dehydroamino acid or a coupling reaction initiated by a radical species. The collaborative actions of LanD-like proteins with diverse enzymes involved in dehydration, dethiolation or cyclization lead to the construction of structurally distinct peptide natural products with analogous C-terminal macrocyclic moieties. This concept summarizes existing knowledge regarding biosynthetic pathways of AviCys analogs to emphasize the diversity of biosynthetic mechanisms that paves the way for future genome mining explorations into diverse peptide natural products.
Collapse
Affiliation(s)
- Botao Cheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yanqing Xue
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yuting Duan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
5
|
Wang S, Wu K, Tang YJ, Deng H. Dehydroamino acid residues in bioactive natural products. Nat Prod Rep 2024; 41:273-297. [PMID: 37942836 PMCID: PMC10880069 DOI: 10.1039/d3np00041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 11/10/2023]
Abstract
Covering: 2000 to up to 2023α,β-Dehydroamino acids (dhAAs) are unsaturated nonproteinogenic amino acids found in a wide array of naturally occurring peptidyl metabolites, predominantly those from bacteria. Other organisms, such as fungi, higher plants and marine invertebrates, have also been found to produce dhAA-containing peptides. The α,β-unsaturation in dhAAs has profound effects on the properties of these molecules. They display significant synthetic flexibility, readily undergoing reactions such as Michael additions, transition-metal-catalysed cross-couplings, and cycloadditions. These residues in peptides/proteins also exhibit great potential in bioorthogonal applications using click chemistry. Peptides containing contiguous dhAA residues have been extensively investigated in the field of foldamers, self-assembling supermolecules that mimic biomacromolecules such as proteins to fold into well-defined conformations. dhAA residues in these peptidyl materials tend to form a 2.05-helix. As a result, stretches of dhAA residues arrange in an extended conformation. In particular, peptidyl foldamers containing β-enamino acid units display interesting conformational, electronic, and supramolecular aggregation properties that can be modulated by light-dependent E-Z isomerization. Among approximately 40 dhAAs found in the natural product inventory, dehydroalanine (Dha) and dehydrobutyrine (Dhb) are the most abundant. Dha is the simplest dehydro-α-amino acid, or α-dhAA, without any geometrical isomers, while its re-arranged isomer, 3-aminoacrylic acid (Aaa or ΔβAla), is the simplest dehydro-β-amino acid, or β-enamino acid, and displays E/Z isomerism. Dhb is the simplest α-dhAA that exhibits E/Z isomerism. The Z-isomer of Dhb (Z-Dhb) is sterically favourable and is present in the majority of naturally occurring peptides containing Dhb residues. Dha and Z-Dhb motifs are commonly found in ribosomally synthesized and post-translationally modified peptides (RiPPs). In the last decade, the formation of Dha and Dhb motifs in RiPPs has been extensively investigated, which will be briefly discussed in this review. The formation of other dhAA residues in natural products (NPs) is, however, less understood. In this review, we will discuss recent advances in the biosynthesis of peptidyl NPs containing unusual dhAA residues and cryptic dhAA residues. The proposed biosynthetic pathways of these natural products will also be discussed.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Kewen Wu
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
6
|
Luo Y, Xu S, Frerk AM, van der Donk WA. Facile Method for Determining Lanthipeptide Stereochemistry. Anal Chem 2024; 96:1767-1773. [PMID: 38232355 PMCID: PMC10831782 DOI: 10.1021/acs.analchem.3c04958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Lanthipeptides make up a large group of natural products that belong to the ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides contain lanthionine and methyllanthionine bis-amino acids that have varying stereochemistry. The stereochemistry of new lanthipeptides is often not determined because current methods require equipment that is not standard in most laboratories. In this study, we developed a facile, efficient, and user-friendly method for detecting lanthipeptide stereochemistry, utilizing advanced Marfey's analysis with detection by liquid chromatography coupled with mass spectrometry (LC-MS). Under optimized conditions, 0.05 mg of peptide is sufficient to characterize the stereochemistry of five (methyl)lanthionines of different stereochemistry using a simple liquid chromatography setup, which is a much lower detection limit than current methods. In addition, we describe methods to readily access standards of the three different methyllanthionine stereoisomers and two different lanthionine stereoisomers that have been reported in known lanthipeptides. The developed workflow uses a commonly used nonchiral column system and offers a scalable platform to assist antimicrobial discovery. We illustrate its utility with an example of a lanthipeptide discovered by genome mining.
Collapse
Affiliation(s)
- Youran Luo
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Shuyun Xu
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Autumn M. Frerk
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Thibodeaux CJ. The conformationally dynamic structural biology of lanthipeptide biosynthesis. Curr Opin Struct Biol 2023; 81:102644. [PMID: 37352604 DOI: 10.1016/j.sbi.2023.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/25/2023]
Abstract
Lanthipeptide synthetases are fascinating biosynthetic enzymes that install intramolecular thioether bridges into genetically encoded peptides, typically endowing the peptide with therapeutic properties. The factors that control the macrocyclic topology of lanthipeptides are numerous and remain difficult to predict and manipulate. The key challenge in this endeavor derives from the vast conformational space accessible to the disordered precursor lanthipeptide, which can be manipulated in subtle ways by interaction with the cognate synthetase. This review explores the unique strategies employed by each of the five phylogenetically divergent classes of lanthipeptide synthetase to manipulate and exploit the dynamic lanthipeptide conformational ensemble, collectively enabling these biosynthetic enzymes to guide peptide maturation along specific trajectories to products with distinct macrocyclic topology and biological activity.
Collapse
Affiliation(s)
- Christopher J Thibodeaux
- McGill University, Department of Chemistry, 801Sherbooke St. West, Montréal, Québec, H3A 0B8, Canada.
| |
Collapse
|
8
|
Li Y, Ma Y, Xia Y, Zhang T, Sun S, Gao J, Yao H, Wang H. Discovery and biosynthesis of tricyclic copper-binding ribosomal peptides containing histidine-to-butyrine crosslinks. Nat Commun 2023; 14:2944. [PMID: 37221219 DOI: 10.1038/s41467-023-38517-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Cyclic peptide natural products represent an important class of bioactive compounds and clinical drugs. Enzymatic side-chain macrocyclization of ribosomal peptides is a major strategy developed by nature to generate these chemotypes, as exemplified by the superfamily of ribosomally synthesized and post-translational modified peptides. Despite the diverse types of side-chain crosslinks in this superfamily, the participation of histidine residues is rare. Herein, we report the discovery and biosynthesis of bacteria-derived tricyclic lanthipeptide noursin, which is constrained by a tri amino acid labionin crosslink and an unprecedented histidine-to-butyrine crosslink, named histidinobutyrine. Noursin displays copper-binding ability that requires the histidinobutyrine crosslink and represents the first copper-binding lanthipeptide. A subgroup of lanthipeptide synthetases, named LanKCHbt, were identified to catalyze the formation of both the labionin and the histidinobutyrine crosslinks in precursor peptides and produce noursin-like compounds. The discovery of the histidinobutyrine-containing lanthipeptides expands the scope of post-translational modifications, structural diversity and bioactivity of ribosomally synthesized and post-translational modified peptides.
Collapse
Affiliation(s)
- Yuqing Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yeying Ma
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yinzheng Xia
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Tao Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Shuaishuai Sun
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiangtao Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| | - Hongwei Yao
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
9
|
Lee H, Wu C, Desormeaux EK, Sarksian R, van der Donk WA. Improved production of class I lanthipeptides in Escherichia coli. Chem Sci 2023; 14:2537-2546. [PMID: 36908960 PMCID: PMC9993889 DOI: 10.1039/d2sc06597e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Lanthipeptides are ribosomally synthesised and post-translationally modified peptides containing lanthionine (Lan) and methyllanthionine (MeLan) residues that are formed by dehydration of Ser/Thr residues followed by conjugate addition of Cys to the resulting dehydroamino acids. Class I lanthipeptide dehydratases utilize glutamyl-tRNAGlu as a co-substrate to glutamylate Ser/Thr followed by glutamate elimination. Here we report a new system to heterologously express class I lanthipeptides in Escherichia coli through co-expression of the producing organism's glutamyl-tRNA synthetase (GluRS) and tRNAGlu pair in the vector pEVOL. In contrast to the results in the absence of the pEVOL system, we observed the production of fully-dehydrated peptides, including epilancin 15X, and peptides from the Bacteroidota Chryseobacterium and Runella. A second common obstacle to production of lanthipeptides in E. coli is the formation of glutathione adducts. LanC-like (LanCL) enzymes were previously reported to add glutathione to dehydroamino-acid-containing proteins in Eukarya. Herein, we demonstrate that the LanCL enzymes can remove GSH adducts from C-glutathionylated peptides with dl- or ll-lanthionine stereochemistry. These two advances will aid synthetic biology-driven genome mining efforts to discover new lanthipeptides.
Collapse
Affiliation(s)
- Hyunji Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- College of Pharmacy, Kyungsung University Busan 48434 Republic of Korea
| | - Chunyu Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Emily K Desormeaux
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Raymond Sarksian
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| | - Wilfred A van der Donk
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign 1206 W Gregory Drive Urbana Illinois 61801 USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
- Department of Chemistry, The Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign 600 South Mathews Avenue Urbana Illinois 61801 USA
| |
Collapse
|
10
|
Sarksian R, Zhu L, van der Donk WA. syn-Elimination of glutamylated threonine in lanthipeptide biosynthesis. Chem Commun (Camb) 2023; 59:1165-1168. [PMID: 36625436 PMCID: PMC9890492 DOI: 10.1039/d2cc06345j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methyllanthionine (MeLan) containing macrocycles are key structural features of lanthipeptides. They are formed typically by anti-elimination of L-Thr residues followed by cyclization of L-Cys residues onto the (Z)-dehydrobutyrine (Dhb) intermediates. In this report we demonstrate that the biosynthesis of lanthipeptides containing the D-allo-L-MeLan macrocycle such as the morphogenetic lanthipeptide SapT proceeds through (E)-Dhb intermediates formed by net syn-elimination of L-Thr.
Collapse
Affiliation(s)
- Raymond Sarksian
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-ChampaignUrbanaIL61822USA+1 217 244 5360
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-ChampaignUrbanaIL61822USA
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-ChampaignUrbanaIL61822USA+1 217 244 5360,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaIL61822USA
| |
Collapse
|
11
|
Janssen K, Krasenbrink J, Strangfeld S, Kroheck S, Josten M, Engeser M, Bierbaum G. Elucidation of the Bridging Pattern of the Lantibiotic Pseudomycoicidin. Chembiochem 2023; 24:e202200540. [PMID: 36399337 PMCID: PMC10107895 DOI: 10.1002/cbic.202200540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Lantibiotics are post-translationally modified antibiotic peptides with lanthionine thioether bridges that represent potential alternatives to conventional antibiotics. The lantibiotic pseudomycoicidin is produced by Bacillus pseudomycoides DSM 12442 and is effective against many Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. While prior work demonstrated that pseudomycoicidin possesses one disulfide bridge and four thioether bridges, the ring topology has so far remained unclear. Here, we analyzed several pseudomycoicidin analogues that are affected in ring formation via MALDI-TOF-MS and tandem mass spectrometry with regard to their dehydration and fragmentation patterns, respectively. As a result, we propose a bridging pattern involving Thr8 and Cys13, Thr10 and Cys16, Ser18 and Cys21, and Ser20 and Cys26, thus, forming two double ring systems. Additionally, we localized the disulfide bridge to connect Cys3 and Cys7 and, therefore, fully elucidated the bridging pattern of pseudomycoicidin.
Collapse
Affiliation(s)
- Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Julia Krasenbrink
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany.,Present address: Centre for Microbiology and Environmental Systems Science, Department for Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Sarina Strangfeld
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Sarah Kroheck
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Michaele Josten
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute of Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127, Bonn, Germany
| |
Collapse
|
12
|
Ongpipattanakul C, Liu S, Luo Y, Nair SK, van der Donk WA. The mechanism of thia-Michael addition catalyzed by LanC enzymes. Proc Natl Acad Sci U S A 2023; 120:e2217523120. [PMID: 36634136 PMCID: PMC9934072 DOI: 10.1073/pnas.2217523120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
In both eukarya and bacteria, the addition of Cys to dehydroalanine (Dha) and dehydrobutyrine (Dhb) occurs in various biological processes. In bacteria, intramolecular thia-Michael addition catalyzed by lanthipeptide cyclases (LanC) proteins or protein domains gives rise to a class of natural products called lanthipeptides. In eukarya, dehydroamino acids in signaling proteins are introduced by effector proteins produced by pathogens like Salmonella to dysregulate host defense mechanisms. A eukaryotic LanC-like (LanCL) enzyme catalyzes the addition of Cys in glutathione to Dha/Dhb to protect the cellular proteome from unwanted chemical and biological activity. To date, the mechanism of the enzyme-catalyzed thia-Michael addition has remained elusive. We report here the crystal structures of the human LanCL1 enzyme complexed with different ligands, including the product of thia-Michael addition of glutathione to a Dhb-containing peptide that represents the activation loop of Erk. The structures show that a zinc ion activates the Cys thiolate for nucleophilic attack and that a conserved His is poised to protonate the enolate intermediate to achieve a net anti-addition. A second His hydrogen bonds to the carbonyl oxygen of the former Dhb and may stabilize the negative charge that builds up on this oxygen atom in the enolate intermediate. Surprisingly, the latter His is not conserved in orthologous enzymes that catalyze thia-Michael addition to Dha/Dhb. Eukaryotic LanCLs contain a His, whereas bacterial stand-alone LanCs have a Tyr residue, and LanM enzymes that have LanC-like domains have a Lys, Asn, or His residue. Mutational and binding studies support the importance of these residues for catalysis.
Collapse
Affiliation(s)
| | - Shi Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Youran Luo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- HHMI, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
13
|
Panina IS, Balandin SV, Tsarev AV, Chugunov AO, Tagaev AA, Finkina EI, Antoshina DV, Sheremeteva EV, Paramonov AS, Rickmeyer J, Bierbaum G, Efremov RG, Shenkarev ZO, Ovchinnikova TV. Specific Binding of the α-Component of the Lantibiotic Lichenicidin to the Peptidoglycan Precursor Lipid II Predetermines Its Antimicrobial Activity. Int J Mol Sci 2023; 24:ijms24021332. [PMID: 36674846 PMCID: PMC9863751 DOI: 10.3390/ijms24021332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
To date, a number of lantibiotics have been shown to use lipid II-a highly conserved peptidoglycan precursor in the cytoplasmic membrane of bacteria-as their molecular target. The α-component (Lchα) of the two-component lantibiotic lichenicidin, previously isolated from the Bacillus licheniformis VK21 strain, seems to contain two putative lipid II binding sites in its N-terminal and C-terminal domains. Using NMR spectroscopy in DPC micelles, we obtained convincing evidence that the C-terminal mersacidin-like site is involved in the interaction with lipid II. These data were confirmed by the MD simulations. The contact area of lipid II includes pyrophosphate and disaccharide residues along with the first isoprene units of bactoprenol. MD also showed the potential for the formation of a stable N-terminal nisin-like complex; however, the conditions necessary for its implementation in vitro remain unknown. Overall, our results clarify the picture of two component lantibiotics mechanism of antimicrobial action.
Collapse
Affiliation(s)
- Irina S. Panina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-495-335-0900
| | - Andrey V. Tsarev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Anton O. Chugunov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Andrey A. Tagaev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Daria V. Antoshina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elvira V. Sheremeteva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander S. Paramonov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Jasmin Rickmeyer
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53117 Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53117 Bonn, Germany
| | - Roman G. Efremov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Department of Applied Mathematics, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Zakhar O. Shenkarev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Department of Bioorganic Chemistry, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
14
|
Vermeulen R, Van Staden ADP, van Zyl LJ, Dicks LMT, Trindade M. Unusual Class I Lanthipeptides from the Marine Bacteria Thalassomonas viridans. ACS Synth Biol 2022; 11:3608-3616. [PMID: 36323319 PMCID: PMC9680876 DOI: 10.1021/acssynbio.2c00480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/06/2022]
Abstract
A novel class I lanthipeptide produced by the marine bacterium Thalassomonas viridans XOM25T was identified using genome mining. The putative lanthipeptides were heterologously coexpressed in Escherichia coli as GFP-prepeptide fusions along with the operon-encoded class I lanthipeptide modification machinery VdsCB. The core peptides, VdsA1 and VdsA2, were liberated from GFP using the NisP protease, purified, and analyzed by collision-induced tandem mass spectrometry. The operon-encoded cyclase and dehydratase, VdsCB, exhibited lanthipeptide synthetase activity via post-translational modification of the VdsA1 and VdsA2 core peptides. Modifications were directed by the conserved double glycine leader containing prepeptides of VdsA1 and VdsA2.
Collapse
Affiliation(s)
- Ross Vermeulen
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
- Department
of Biotechnology, Institute for Microbial Biotechnology and Metagenomics
(IMBM), University of the Western Cape, Bellville 7535 South Africa
| | - Anton Du Preez Van Staden
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
- Division
of Clinical Pharmacology, Department of Medicine, Faculty of Medicine
and Health Sciences, Stellenbosch University, Parow 7505, South Africa
| | - Leonardo Joaquim van Zyl
- Department
of Biotechnology, Institute for Microbial Biotechnology and Metagenomics
(IMBM), University of the Western Cape, Bellville 7535 South Africa
| | - Leon M. T. Dicks
- Department
of Microbiology, Stellenbosch University, Matieland 7602, South Africa
| | - Marla Trindade
- Department
of Biotechnology, Institute for Microbial Biotechnology and Metagenomics
(IMBM), University of the Western Cape, Bellville 7535 South Africa
| |
Collapse
|
15
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
16
|
Abstract
The three-dimensional structure of natural products is critical for their biological activities and, as such, enzymes have evolved that specifically generate active stereoisomers. Lanthipeptides are post-translationally modified peptidic natural products that contain macrocyclic thioethers featuring lanthionine (Lan) and/or methyllanthionine (MeLan) residues with defined stereochemistry. In this report, we compare two class I lanthipeptide biosynthetic gene clusters (BGCs), coi and olv, that represent two families of lanthipeptide gene clusters found in Actinobacteria. The precursor peptides and BGCs are quite similar with genes encoding a dehydratase, cyclase, and methyltransferase (MT). We illustrate that the precursor peptide CoiA1 is converted by these enzymes into a polymacrocyclic product, mCoiA1, that contains an analogous ring pattern to the previously characterized post-translationally modified OlvA peptide (mOlvA). However, a clear distinction between the two BGCs is an additional Thr-glutamyl lyase (GL) domain that is fused to the MT, CoiSA, which results in divergence of the product stereochemistry for the coi BGC. Two out of three MeLan rings of mCoiA1 contain different stereochemistry than the corresponding residues in mOlvA, with the most notable difference being a rare d-allo-l-MeLan residue, the formation of which is guided by CoiSA. This study illustrates how nature utilizes a distinct GL to control natural product stereochemistry in lanthipeptide biosynthesis.
Collapse
Affiliation(s)
- Raymond Sarksian
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States,Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States,. Tel: 217 244 5360
| |
Collapse
|
17
|
Pei ZF, Zhu L, Sarksian R, van der Donk WA, Nair SK. Class V Lanthipeptide Cyclase Directs the Biosynthesis of a Stapled Peptide Natural Product. J Am Chem Soc 2022; 144:17549-17557. [PMID: 36107785 PMCID: PMC9621591 DOI: 10.1021/jacs.2c06808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lanthipeptides are a class of cyclic peptides characterized by the presence of one or more lanthionine (Lan) or methyllanthionine (MeLan) thioether rings. These cross-links are produced by α,β-unsaturation of Ser or Thr residues in peptide substrates by dehydration, followed by a Michael-type conjugate addition of Cys residues onto the dehydroamino acids. Lanthipeptides may be broadly classified into at least five different classes, and the biosynthesis of classes I-IV lanthipeptides requires catalysis by LanC cyclases that control both the site-specificity and the stereochemistry of the conjugate addition. In contrast, there are no current examples of LanCs that occur in class V biosynthetic clusters, despite the presence of lanthionine rings in these compounds. In this work, bioinformatics-guided co-occurrence analysis identifies more than 240 putative class V lanthipeptide clusters that contain a LanC cyclase. Reconstitution studies demonstrate that the cyclase-catalyzed product is notably distinct from the product formed spontaneously. Stereochemical analysis shows that the cyclase diverts the final product to a configuration that is distinct from one that is energetically favored. Structural characterization of the final product by multi-dimensional NMR spectroscopy reveals that it forms a helical stapled peptide. Mutational analysis identified a plausible order for cyclization and suggests that enzymatic rerouting to the final structure is largely directed by the construction of the first lanthionine ring. These studies show that lanthipeptide cyclases are needed for the biosynthesis of some constrained peptides, the formations of which would otherwise be energetically unfavored.
Collapse
Affiliation(s)
- Zeng-Fei Pei
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Raymond Sarksian
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|