1
|
Zhang T, Lyu J, Yang B, Yun SD, Scott E, Zhao M, Laganowsky A. Native mass spectrometry and structural studies reveal modulation of MsbA-nucleotide interactions by lipids. Nat Commun 2024; 15:5946. [PMID: 39009687 PMCID: PMC11251056 DOI: 10.1038/s41467-024-50350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/07/2024] [Indexed: 07/17/2024] Open
Abstract
The ATP-binding cassette (ABC) transporter, MsbA, plays a pivotal role in lipopolysaccharide (LPS) biogenesis by facilitating the transport of the LPS precursor lipooligosaccharide (LOS) from the cytoplasmic to the periplasmic leaflet of the inner membrane. Despite multiple studies shedding light on MsbA, the role of lipids in modulating MsbA-nucleotide interactions remains poorly understood. Here we use native mass spectrometry (MS) to investigate and resolve nucleotide and lipid binding to MsbA, demonstrating that the transporter has a higher affinity for adenosine 5'-diphosphate (ADP). Moreover, native MS shows the LPS-precursor 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)2-lipid A (KDL) can tune the selectivity of MsbA for adenosine 5'-triphosphate (ATP) over ADP. Guided by these studies, four open, inward-facing structures of MsbA are determined that vary in their openness. We also report a 2.7 Å-resolution structure of MsbA in an open, outward-facing conformation that is not only bound to KDL at the exterior site, but with the nucleotide binding domains (NBDs) adopting a distinct nucleotide-free structure. The results obtained from this study offer valuable insight and snapshots of MsbA during the transport cycle.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Bowei Yang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sangho D Yun
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Stover L, Zhu Y, Schrecke S, Laganowsky A. TREK2 Lipid Binding Preferences Revealed by Native Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1516-1522. [PMID: 38843438 PMCID: PMC11228984 DOI: 10.1021/jasms.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
TREK2, a two-pore domain potassium channel, is recognized for its regulation by various stimuli, including lipids. While previous members of the TREK subfamily, TREK1 and TRAAK, have been investigated to elucidate their lipid affinity and selectivity, TREK2 has not been similarly studied in this regard. Our findings indicate that while TRAAK and TREK2 exhibit similarities in terms of electrostatics and share an overall structural resemblance, there are notable distinctions in their interaction with lipids. Specifically, SAPI(4,5)P2,1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-(1'-myo-inositol-4',5'-bisphosphate) exhibits a strong affinity for TREK2, surpassing that of dOPI(4,5)P2,1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-4',5'-bisphosphate), which differs in its acyl chains. TREK2 displays lipid binding preferences not only for the headgroup of lipids but also toward the acyl chains. Functional studies draw a correlation for lipid binding affinity and activity of the channel. These findings provide important insight into elucidating the molecular prerequisites for specific lipid binding to TREK2 important for function.
Collapse
Affiliation(s)
- Lauren Stover
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Zhu Y, Yun SD, Zhang T, Chang JY, Stover L, Laganowsky A. Native mass spectrometry of proteoliposomes containing integral and peripheral membrane proteins. Chem Sci 2023; 14:14243-14255. [PMID: 38098719 PMCID: PMC10718073 DOI: 10.1039/d3sc04938h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Cellular membranes are critical to the function of membrane proteins, whether they are associated (peripheral) or embedded (integral) within the bilayer. While detergents have contributed to our understanding of membrane protein structure and function, there remains challenges in characterizing protein-lipid interactions within the context of an intact membrane. Here, we developed a method to prepare proteoliposomes for native mass spectrometry (MS) studies. We first use native MS to detect the encapsulation of soluble proteins within liposomes. We then find the peripheral Gβ1γ2 complex associated with the membrane can be ejected and analyzed using native MS. Four different integral membrane proteins (AmtB, AqpZ, TRAAK, and TREK2), all of which have previously been characterized in detergent, eject from the proteoliposomes as intact complexes bound to lipids that have been shown to tightly associate in detergent, drawing a correlation between the two approaches. We also show the utility of more complex lipid environments, such as a brain polar lipid extract, and show TRAAK ejects from liposomes of this extract bound to lipids. These findings underscore the capability to eject protein complexes from membranes bound to both lipids and metal ions, and this approach will be instrumental in the identification of key protein-lipid interactions.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Sangho D Yun
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Jing-Yuan Chang
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Lauren Stover
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
4
|
Zhu Y, Peng BJ, Kumar S, Stover L, Chang JY, Lyu J, Zhang T, Schrecke S, Azizov D, Russell DH, Fang L, Laganowsky A. Polyamine detergents tailored for native mass spectrometry studies of membrane proteins. Nat Commun 2023; 14:5676. [PMID: 37709761 PMCID: PMC10502129 DOI: 10.1038/s41467-023-41429-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Native mass spectrometry (MS) is a powerful technique for interrogating membrane protein complexes and their interactions with other molecules. A key aspect of the technique is the ability to preserve native-like structures and noncovalent interactions, which can be challenging depending on the choice of detergent. Different strategies have been employed to reduce charge on protein complexes to minimize activation and preserve non-covalent interactions. Here, we report the synthesis of a class of polyamine detergents tailored for native MS studies of membrane proteins. These detergents, a series of spermine covalently attached to various alkyl tails, are exceptional charge-reducing molecules, exhibiting a ten-fold enhanced potency over spermine. Addition of polyamine detergents to proteins solubilized in maltoside detergents results in improved, charge-reduced native mass spectra and reduced dissociation of subunits. Polyamine detergents open new opportunities to investigate membrane proteins in different detergent environments that have thwarted previous native MS studies.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Bo-Ji Peng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Smriti Kumar
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Lauren Stover
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jing-Yuan Chang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Djavdat Azizov
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Lei Fang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Zhu Y, Odenkirk MT, Qiao P, Zhang T, Schrecke S, Zhou M, Marty MT, Baker ES, Laganowsky A. Combining native mass spectrometry and lipidomics to uncover specific membrane protein-lipid interactions from natural lipid sources. Chem Sci 2023; 14:8570-8582. [PMID: 37593000 PMCID: PMC10430552 DOI: 10.1039/d3sc01482g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
While it is known that lipids play an essential role in regulating membrane protein structure and function, it remains challenging to identify specific protein-lipid interactions. Here, we present an innovative approach that combines native mass spectrometry (MS) and lipidomics to identify lipids retained by membrane proteins from natural lipid extracts. Our results reveal that the bacterial ammonia channel (AmtB) enriches specific cardiolipin (CDL) and phosphatidylethanolamine (PE) from natural headgroup extracts. When the two extracts are mixed, AmtB retains more species, wherein selectivity is tuned to bias headgroup selection. Using a series of natural headgroup extracts, we show TRAAK, a two-pore domain K+ channel (K2P), retains specific acyl chains that is independent of the headgroup. A brain polar lipid extract was then combined with the K2Ps, TRAAK and TREK2, to understand lipid specificity. More than a hundred lipids demonstrated affinity for each protein, and both channels were found to retain specific fatty acids and lysophospholipids known to stimulate channel activity, even after several column washes. Natural lipid extracts provide the unique opportunity to not only present natural lipid diversity to purified membrane proteins but also identify lipids that may be important for membrane protein structure and function.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Melanie T Odenkirk
- Department of Chemistry, North Carolina State University Raleigh NC 27695 USA
| | - Pei Qiao
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Samantha Schrecke
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| | - Ming Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine Houston TX 77030 USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, The University of Arizona Tucson AZ 85721 USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina Chapel Hill NC 27514 USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University College Station TX 77843 USA
| |
Collapse
|
6
|
Mass spectrometry of intact membrane proteins: shifting towards a more native-like context. Essays Biochem 2023; 67:201-213. [PMID: 36807530 PMCID: PMC10070488 DOI: 10.1042/ebc20220169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Integral membrane proteins are involved in a plethora of biological processes including cellular signalling, molecular transport, and catalysis. Many of these functions are mediated by non-covalent interactions with other proteins, substrates, metabolites, and surrounding lipids. Uncovering such interactions and deciphering their effect on protein activity is essential for understanding the regulatory mechanisms underlying integral membrane protein function. However, the detection of such dynamic complexes has proven to be challenging using traditional approaches in structural biology. Native mass spectrometry has emerged as a powerful technique for the structural characterisation of membrane proteins and their complexes, enabling the detection and identification of protein-binding partners. In this review, we discuss recent native mass spectrometry-based studies that have characterised non-covalent interactions of membrane proteins in the presence of detergents or membrane mimetics. We additionally highlight recent progress towards the study of membrane proteins within native membranes and provide our perspective on how these could be combined with recent developments in instrumentation to investigate increasingly complex biomolecular systems.
Collapse
|