1
|
Jenkins DT, Trodden EC, Andresen JM, Mansell SM, McIntosh RD. Switchable, chiral aluminium catalysts for ring opening polymerisations. Dalton Trans 2024; 53:18089-18093. [PMID: 39523835 DOI: 10.1039/d4dt02831g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A switchable, solvent-free catalytic system was developed in which Al methyl aminebis(phenolate) catalysts selectively initiate the formation of a polyether from cyclohexene oxide under CO2 atmosphere or the ring opening copolymerisation (ROCoP) of cyclohexene oxide and CO2 through the addition of a PPNCl (bis(triphenylphosphine)iminium chloride) cocatalyst to form poly(cyclohexene carbonate).
Collapse
Affiliation(s)
- David T Jenkins
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Elizabeth C Trodden
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
- Research Centre for Carbon Solutions (RCCS), Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - John M Andresen
- Research Centre for Carbon Solutions (RCCS), Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Stephen M Mansell
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Ruaraidh D McIntosh
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
2
|
Yang GW, Xie R, Zhang YY, Xu CK, Wu GP. Evolution of Copolymers of Epoxides and CO 2: Catalysts, Monomers, Architectures, and Applications. Chem Rev 2024; 124:12305-12380. [PMID: 39454031 DOI: 10.1021/acs.chemrev.4c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The copolymerization of CO2 and epoxides presents a transformative approach to converting greenhouse gases into aliphatic polycarbonates (CO2-PCs), thereby reducing the polymer industry's dependence on fossil resources. Over the past 50 years, a wide array of metallic catalysts, both heterogeneous and homogeneous, have been developed to achieve precise control over polymer selectivity, sequence, regio-, and stereoselectivity. This review details the evolution of metal-based catalysts, with a particular focus on the emergence of organoborane catalysts, and explores how these catalysts effectively address kinetic and thermodynamic challenges in CO2/epoxides copoly2merization. Advances in the synthesis of CO2-PCs with varied sequence and chain architectures through diverse polymerization protocols are examined, alongside the applications of functional CO2-PCs produced by incorporating different epoxides. The review also underscores the contributions of computational techniques to our understanding of copolymerization mechanisms and highlights recent advances in the closed-loop chemical recycling of CO2-sourced polycarbonates. Finally, the industrialization efforts of CO2-PCs are discussed, offering readers a comprehensive understanding of the evolution and future potential of epoxide copolymerization with CO2.
Collapse
Affiliation(s)
- Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yao-Yao Zhang
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Cheng-Kai Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
3
|
Kerr RWF, Craze AR, Williams CK. Cyclic ether and anhydride ring opening copolymerisation delivering new ABB sequences in poly(ester- alt-ethers). Chem Sci 2024; 15:11617-11625. [PMID: 39055022 PMCID: PMC11268503 DOI: 10.1039/d4sc02051k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Poly(ester-alt-ethers) are interesting as they combine the ester linkage rigidity and potential for hydrolysis with ether linkage flexibility. This work describes a generally applicable route to their synthesis applying commercial monomers and yielding poly(ester-alt-ethers) with variable compositions and structures. The ring-opening copolymerisation of anhydrides (A), epoxides (B) and cyclic ethers (C), using a Zr(iv) catalyst, produces either ABB or ABC type poly(ester-alt-ethers). The catalysis is effective using a range of commercial anhydrides (A), including those featuring aromatic, unsaturated or tricyclic monomers, and with different alkylene oxides (epoxides, B), including those featuring aliphatic, alkene or ether substituents. The range of effective cyclic ethers (C) includes tetrahydrofuran, 2,5-dihydrofuran (DHF) or 1,4-bicyclic ether (OBH). In these investigations, the catalyst:anhydride loadings are generally held constant and deliver copolymers with degrees of copolymerisation of 25, with molar mass values from 4 to 11 kg mol-1 and mostly with narrow dispersity molar mass distributions. All the new copolymers are amorphous, they show the onset of thermal decomposition between 270 and 344 °C and variable glass transition temperatures (-50 to 48 °C), depending on their compositions. Several of the new poly(ester-alt-ethers) feature alkene substituents which are reacted with mercaptoethanol, by thiol-ene processes, to install hydroxyl substituents along the copolymer chain. This strategy affords poly(ether-alt-esters) featuring 30, 70 and 100% hydroxyl substituents (defined as % of monomer repeat units featuring a hydroxyl group) which moderate physical properties such as hydrophilicity, as quantified by water contact angles. Overall, the new sequence selective copolymerisation catalysis is shown to be generally applicable to a range of anhydrides, epoxides and cyclic ethers to produce new families of poly(ester-alt-ethers). In future these copolymers should be explored for applications in liquid formulations, electrolytes, surfactants, plasticizers and as components in adhesives, coatings, elastomers and foams.
Collapse
Affiliation(s)
- Ryan W F Kerr
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Alexander R Craze
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Charlotte K Williams
- Department of Chemistry, Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
4
|
Fornacon-Wood C, Stühler MR, Millanvois A, Steiner L, Weimann C, Silbernagl D, Sturm H, Paulus B, Plajer AJ. Fluoride recovery in degradable fluorinated polyesters. Chem Commun (Camb) 2024; 60:7479-7482. [PMID: 38939919 DOI: 10.1039/d4cc02513j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
We report a new class of degradable fluorinated polymers through the copolymerization of tetrafluorophthalic anhydride and propylene oxide or trifluoropropylene oxide which show up to 20 times quicker degradation than the non-fluorinated equivalents and allow for fluoride recovery.
Collapse
Affiliation(s)
- Christoph Fornacon-Wood
- Makromolekulare Chemie 1, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Merlin R Stühler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arminallee 22, 14195 Berlin, Germany
| | - Alexandre Millanvois
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arminallee 22, 14195 Berlin, Germany
| | - Luca Steiner
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arminallee 22, 14195 Berlin, Germany
| | - Christiane Weimann
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Dorothee Silbernagl
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Heinz Sturm
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arminallee 22, 14195 Berlin, Germany
| | - Alex J Plajer
- Makromolekulare Chemie 1, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
5
|
Cheng-Tan MDL, Nguyen AN, Gordon CT, Wood ZA, Manjarrez Y, Fieser ME. Choline Halide-Based Deep Eutectic Solvents as Biocompatible Catalysts for the Alternating Copolymerization of Epoxides and Cyclic Anhydrides. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7246-7255. [PMID: 38757124 PMCID: PMC11094800 DOI: 10.1021/acssuschemeng.3c06766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Aliphatic polyesters have received considerable attention in recent years due to their biodegradability and biocompatible, mechanical, and thermal properties that can make them a suitable alternative to today's commercialized polymers. The ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides is a route to synthesize a diverse array of polyesters that could be useful in many applications. However, the catalysts used rarely consider biocompatible catalysts in the case that any are left in the polymer. To the best of our knowledge, we report the first example of using deep eutectic solvents (DESs) as biocompatible catalysts for this target ROCOP with polymerization activity for at least six diverse monomer pairs. Choline halide salts are active for this polymerization, with dried salts showing polymerization slower than that of those conducted in air. Hydrogen bonding with water is hypothesized to enhance the rate-determining step of epoxide ring opening. While the presence of water improves the rate of polymerization, it also acts as a chain transfer agent, leading to smaller molar mass polymers than intended. Combining the choline halide salts with urea or ethylene glycol hydrogen bond donors in air led to DES catalysts that reacted similarly to the salts exposed to air. However, when generating these DESs in air-free conditions, they showed similar rates of polymerization without a drop in polymer molar mass. The hydrogen bonding provided by urea and ethylene glycol seems to promote the rate increase without serving as a chain transfer agent. Results reported herein display the promising potential of biocompatible catalyst systems for this ROCOP process as well as introducing the use of hydrogen bonding to enhance polymerization rates.
Collapse
Affiliation(s)
| | - Angelyn N. Nguyen
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Collette T. Gordon
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Zachary A. Wood
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yvonne Manjarrez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Megan E. Fieser
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Wrigley
Institute for Environment and Sustainability, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
7
|
Zhang X, Xia Y, Sun Y, Zhang C, Zhang X. Water-Degradable Oxygen-Rich Polymers with AB/ABB Units from Fast and Selective Copolymerization. Angew Chem Int Ed Engl 2024; 63:e202315524. [PMID: 38279840 DOI: 10.1002/anie.202315524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 01/29/2024]
Abstract
Researchers have been chasing plastics that can automatically and fully degrade into valuable products under natural conditions. Here, we develop a series of water-degradable polymers from the first reported fast and selective cationic copolymerization of formaldehyde (B) with cyclic anhydrides (A). In addition to readily accessible monomers, the method is performed at industrially relevant temperatures (~100 °C), takes tens or even minutes, and uses common acid as the catalyst. Interestingly, such polymers possess tunable AB/ABB-type repeating units, which are considered to be thermodynamic and kinetic products, respectively, resulting in low carbon content ([O] : [C] up to 1 : 1). Notably, the polymers can completely degrade to valuable diacids within 150 days in water at ambient temperature owing to the incorporation of carboxyl terminals and acid-responsive acetal units. By washing with aqueous sodium carbonate, the polymers are relatively stable over several months.
Collapse
Affiliation(s)
- Xun Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yanni Xia
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yue Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
8
|
Shellard EK, Diment WT, Resendiz-Lara DA, Fiorentini F, Gregory GL, Williams CK. Al(III)/K(I) Heterodinuclear Polymerization Catalysts Showing Fast Rates and High Selectivity for Polyester Polyols. ACS Catal 2024; 14:1363-1374. [PMID: 38327648 PMCID: PMC10845108 DOI: 10.1021/acscatal.3c05712] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 02/09/2024]
Abstract
Low molar mass, hydroxyl end-capped polymers, often termed "polyols," are widely used to make polyurethanes, resins, and coatings and as surfactants in liquid formulations. Epoxide/anhydride ring-opening copolymerization (ROCOP) is a controlled polymerization route to make them, and its viability depends upon catalyst selection. In the catalysis, the polyester polyol molar masses and end-groups are controlled by adding specific but excess quantities of diols (vs catalyst), known as the chain transfer agent (CTA), to the polymerizations, but many of the best current catalysts are inhibited or even deactivated by alcohols. Herein, a series of air-stable Al(III)/K(I) heterodinuclear polymerization catalysts show rates and selectivity at the upper end of the field. They also show remarkable increases in activity, with good selectivity and control, as quantities of diol are increased from 10-400 equiv. The reactions are accelerated by alcohols, and simultaneously, their use allows for the production of hydroxy telechelic poly/oligoesters (400 < Mn (g mol-1) < 20,400, Đ < 1.19). For example, cyclohexene oxide (CHO)/phthalic anhydride (PA) ROCOP, using the best Al(III)/K(I) catalyst with 200 equiv of diol, shows a turnover frequency (TOF) of 1890 h-1, which is 4.4× higher than equivalent reactions without any diol (Catalyst/Diol/PA/CHO = 1:10-400:400:2000, 100 °C). In all cases, the catalysis is well controlled and highly ester linkage selective (ester linkages >99%) and operates effectively using bicyclic and/or biobased anhydrides with bicyclic or flexible alkylene epoxides. These catalysts are recommended for future production and application development using polyester polyols.
Collapse
Affiliation(s)
- Edward
J. K. Shellard
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Wilfred T. Diment
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Diego A. Resendiz-Lara
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Francesca Fiorentini
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Georgina L. Gregory
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Charlotte K. Williams
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
9
|
Tran D, Braaksma AN, Andras AM, Boopathi SK, Darensbourg DJ, Wooley KL. Structural Metamorphoses of d-Xylose Oxetane- and Carbonyl Sulfide-Based Polymers In Situ during Ring-Opening Copolymerizations. J Am Chem Soc 2023; 145:18560-18567. [PMID: 37578470 PMCID: PMC10863053 DOI: 10.1021/jacs.3c05529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 08/15/2023]
Abstract
Polymers constructed from copolymerizations of carbohydrates with C1 feedstocks are promising targets that provide transformation of sustainably sourced building blocks into next-generation, environmentally degradable plastic materials. In this work, the initial intention was to expand beyond polycarbonates prepared by the copolymerization of oxetanes derived from d-xylose with CO2 and incorporate sulfur atoms through the establishment of monothiocarbonates that would provide the ability to modulate the backbone compositions and result in unique effects upon the chemical, physical, and mechanical properties. Therefore, the syntheses of poly(1,2-O-isopropylidene-α-d-xylofuranose monothiocarbonate)s were investigated by ring-opening copolymerizations of 3,5-anhydro-1,2-O-isopropylidene-α-d-xylofuranose with carbonyl sulfide (COS) facilitated by (salen)CrCl/cocatalyst systems. Unexpectedly, when copolymerization temperatures exceeded 40 °C, oxygen/sulfur exchange reactions occurred, causing in situ dynamic backbone restructuring through a series of inter-related and complex mechanistic pathways that transformed monothiocarbonate monomeric repeating units into carbonate and thioether dimeric repeating units. These backbone structural compositional transformations were investigated through a combination of Fourier transform infrared and nuclear magnetic resonance spectroscopic techniques and were demonstrated to be easily tuned via temperature and catalyst/cocatalyst stoichiometries. Furthermore, the regiochemistries of these d-xylose-based sulfur-containing polymers revealed that monothiocarbonate monomeric repeating units had a head-to-tail connectivity, while the carbonate and thioether dimeric repeating units had dual head-to-head and tail-to-tail connectivities. These sulfur-containing polymers exhibited enhanced thermal stabilities compared to their oxygen-containing polycarbonate analogues and revealed variations in the effects upon glass transition temperatures, demonstrating the effect of sulfur incorporation in the polymer backbone. These findings contribute to the advancement of sustainable polymer production by using feedstocks of natural origin coupled with COS.
Collapse
Affiliation(s)
- David
K. Tran
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Ashley N. Braaksma
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Autumn M. Andras
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Senthil K. Boopathi
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Donald J. Darensbourg
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Karen L. Wooley
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
- Materials
Science & Engineering, Texas A&M
University, College
Station, Texas 77842, United States
- Chemical
Engineering, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
10
|
Werlinger F, Caprile R, Cárdenas-Toledo V, Tarraff B, Mesías-Salazar Á, Rojas RS, Martínez J, Trofymchuk OS, Flores ME. Approach to Circular Chemistry Preparing New Polyesters from Olive Oil. ACS OMEGA 2023; 8:21540-21548. [PMID: 37360442 PMCID: PMC10286094 DOI: 10.1021/acsomega.3c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 06/28/2023]
Abstract
The transformation of cooking oils and their waste into polyesters is a challenge for circular chemistry. Herein, we have used epoxidized olive oil (EOO), obtained from cooking olive oil (COO), and various cyclic anhydrides (such as phthalic anhydride PA, maleic anhydride MA, and succinic anhydride SA) as raw materials for the preparation of new bio-based polyesters. For the synthesis of these materials, we have used the bis(guanidine) organocatalyst 1 and tetrabutylammonium iodide (Bu4NI) as cocatalyst. The optimal reaction conditions for the preparation of poly(EOO-co-PA) and poly(EOO-co-MA) were 80 °C for 5 h using toluene as solvent; however, the synthesis of poly(EOO-co-SA) required more extreme reaction conditions. Furthermore, we have exclusively succeeded in obtaining the trans isomer for MA-polyester. The obtained biopolyesters were characterized by NMR, Fourier transform infrared, thermogravimetric analysis, and scanning electron microscopy analyses. Since there are few examples of functionalized and defined compounds based on olive oil, it is innovative and challenging to transform these natural-based compounds into products with high added value.
Collapse
Affiliation(s)
- Francisca Werlinger
- Facultad
de Ciencias Químicas y Farmacéuticas, Departamento de
Química Orgánica y Fisicoquímica, Universidad de Chile, Sergio Livingstone 1007, Casilla 233, Metropolitan Region, Santiago 8380492, Chile
- Instituto
de Ciencias Químicas, Facultad de Ciencias, Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Renato Caprile
- Facultad
de Ciencias Químicas y Farmacéuticas, Departamento de
Química Orgánica y Fisicoquímica, Universidad de Chile, Sergio Livingstone 1007, Casilla 233, Metropolitan Region, Santiago 8380492, Chile
| | - Valentino Cárdenas-Toledo
- Instituto
de Ciencias Químicas, Facultad de Ciencias, Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Bastián Tarraff
- Facultad
de Ciencias Químicas y Farmacéuticas, Departamento de
Química Orgánica y Fisicoquímica, Universidad de Chile, Sergio Livingstone 1007, Casilla 233, Metropolitan Region, Santiago 8380492, Chile
| | - Ángela Mesías-Salazar
- Laboratorio
de Química Inorgánica, Facultad de Química y
de Farmacia, Universidad Católica
de Chile, Casilla 306, Santiago 22 6094411, Chile
| | - René S. Rojas
- Laboratorio
de Química Inorgánica, Facultad de Química y
de Farmacia, Universidad Católica
de Chile, Casilla 306, Santiago 22 6094411, Chile
| | - Javier Martínez
- Instituto
de Ciencias Químicas, Facultad de Ciencias, Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Oleksandra S. Trofymchuk
- Facultad
de Ciencias Químicas y Farmacéuticas, Departamento de
Química Orgánica y Fisicoquímica, Universidad de Chile, Sergio Livingstone 1007, Casilla 233, Metropolitan Region, Santiago 8380492, Chile
| | - Mario E. Flores
- Instituto
de Ciencias Químicas, Facultad de Ciencias, Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
11
|
Wang X, Huo Z, Xie X, Shanaiah N, Tong R. Recent Advances in Sequence-Controlled Ring-Opening Copolymerizations of Monomer Mixtures. Chem Asian J 2023; 18:e202201147. [PMID: 36571563 DOI: 10.1002/asia.202201147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
Transforming renewable resources into functional and degradable polymers is driven by the ever-increasing demand to replace unsustainable polyolefins. However, the utility of many degradable homopolymers remains limited due to their inferior properties compared to commodity polyolefins. Therefore, the synthesis of sequence-defined copolymers from one-pot monomer mixtures is not only conceptually appealing in chemistry, but also economically attractive by maximizing materials usage and improving polymers' performances. Among many polymerization strategies, ring-opening (co)polymerization of cyclic monomers enables efficient access to degradable polymers with high control on molecular weights and molecular weight distributions. Herein, we highlight recent advances in achieving one-pot, sequence-controlled polymerizations of cyclic monomer mixtures using a single catalytic system that combines multiple catalytic cycles. The scopes of cyclic monomers, catalysts, and polymerization mechanisms are presented for this type of sequence-controlled ring-opening copolymerization.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Ziyu Huo
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Xiaoyu Xie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| | - Narasimhamurthy Shanaiah
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Drive, 24061, Blacksburg, VA, USA
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, 24061, Blacksburg, VA, USA
| |
Collapse
|
12
|
Effect of oligo(ethylene glycol) length on properties of poly(oligoethylene glycol terephthalate)s and their cyclic oligomers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zhang Z, Shi C, Scoti M, Tang X, Chen EYX. Alternating Isotactic Polyhydroxyalkanoates via Site- and Stereoselective Polymerization of Unsymmetrical Diolides. J Am Chem Soc 2022; 144:20016-20024. [PMID: 36256876 DOI: 10.1021/jacs.2c08791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Naturally produced, biodegradable polyhydroxyalkanoates (PHAs) promise more sustainable alternatives to nonrenewable/degradable plastics, but biological PHA's stereomicrostructures are strictly confined to isotactic (R)-polymers or copolymers of random sequences. Chemical synthesis via catalyzed ring-opening polymerization (ROP) of cyclic (di)esters offers expedient access to diverse PHA microstructures, including those with defined comonomer sequences and tacticities. However, the synthesis of alternating isotactic PHAs has not been achieved by the existing methodologies. Here, we report the design of unsymmetrically disubstituted eight-membered diolides (rac-8DLR1-R2) and their site- and stereoselective ROP with discrete chiral catalysts, enabling the synthesis of alternating isotactic PHAs, poly(3-hydroxybutyrate-alt-3-hydroxyvalerate) (alt-P3HBV) and poly(3-hydroxybutyrate-alt-3-hydroxyheptanoate) (alt-P3HBHp), with high to quantitative (>99%) alternation and isotacticity and Mn up to 113 kDa and Đ = 1.01. Physical properties of such PHAs are substantially determined by the degree of backbone sequence alternation and tacticity, ranging from amorphous to semi-crystalline materials. The alt-P3HBV shows significantly improved mechanical performance relative to the constituent homopolymers. Intriguingly, enantiomeric (R)-alt-P3HBV and (S)-alt-P3HBV, synthesized by kinetically resolved ROP of rac-8DLMe-Et, form a stereocomplex with a significantly enhanced Tm (by 53 °C), while the enantiomeric homopolymers do not form a stereocomplex.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Miriam Scoti
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, Napoli 80126, Italy
| | - Xiaoyan Tang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
14
|
Xia X, Gao T, Li F, Suzuki R, Isono T, Satoh T. Multidimensional Control of Repeating Unit/Sequence/Topology for One-Step Synthesis of Block Polymers from Monomer Mixtures. J Am Chem Soc 2022; 144:17905-17915. [PMID: 36150017 DOI: 10.1021/jacs.2c06860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synchronously and thoroughly adjusting the chemical structure difference between two blocks of the diblock copolymer is very useful for designing materials but difficult to achieve via self-switchable alternating copolymerization. Here, we report self-switchable alternating copolymerization from a mixture of two different cyclic anhydrides, epoxides, and oxetanes, where a simple alkali metal carboxylate catalyst switches between ring-opening alternating copolymerization (ROCOP) of cyclic anhydrides/epoxides and ROCOP of cyclic anhydrides/oxetanes, resulting in the formation of a perfect block tetrapolymer. By investigating the reactivity ratio of these comonomers, a reactivity gradient was established, enabling the precise synthesis of block copolymers with synchronous adjustment of each unit's chemical structure/sequence/topology. Consequently, a diblock tetrapolymer with two glass transition temperatures (Tg) can be easily produced by adjusting the difference in chemical structures between the two blocks.
Collapse
Affiliation(s)
- Xiaochao Xia
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China.,Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tianle Gao
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Ryota Suzuki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
15
|
Shaw M, Bates M, Jones MD, Ward BD. Metallocene catalysts for the ring-opening co-polymerisation of epoxides and cyclic anhydrides. Polym Chem 2022. [DOI: 10.1039/d2py00335j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ring-opening co-polymerization (ROCOP) of epoxides and cyclic anhydrides is a versatile route to new polyesters. The vast number of monomers that are readily available means that an effectively limitless...
Collapse
|
16
|
Wood ZA, Assefa MK, Fieser ME. Simple yttrium salts as highly active and controlled catalysts for the atom-efficient synthesis of high molecular weight polyesters. Chem Sci 2022; 13:10437-10447. [PMID: 36277642 PMCID: PMC9473511 DOI: 10.1039/d2sc02745c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
The ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides is a promising route to sustainable aliphatic polyesters with diverse mechanical and thermal properties. Here, simple yttrium chloride salts (YCl3THF3.5 and YCl3·6H2O), in combination with a bis(triphenylphosphoranylidene)ammonium chloride [PPN]Cl cocatalyst, are used as efficient and controlled catalysts for ten epoxide and anhydride combinations. In comparison to past literature, this simple salt system exhibits competitive turn-over frequencies (TOFs) for most monomer pairs. Despite no supporting ligand framework, these salts provide excellent control of dispersity, with suppression of side reactions. Using these catalysts, the highest molecular weight reported to date (302.2 kDa) has been obtained with a monosubstituted epoxide and tricyclic anhydride. These data indicate that excellent molecular weight control and suppression of side reactions for ROCOP of epoxides and cyclic anhydrides can coincide with high activity using a simple catalytic system, warranting further research in working towards industrial viability. Two simple yttrium salts, YCl3THF3.5 and YCl3·6H2O, are highly active and controlled catalysts for the perfectly alternating ring-opening copolymerization of epoxides and cyclic anhydrides.![]()
Collapse
Affiliation(s)
- Zachary A. Wood
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Mikiyas K. Assefa
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Megan E. Fieser
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, California, 90089, USA
| |
Collapse
|