1
|
Geng X, Liu X, Yu Q, Zhang C, Zhang X. Advancing H-Bonding Organocatalysis for Ring-Opening Polymerization: Intramolecular Activation of Initiator/Chain End. J Am Chem Soc 2024; 146:25852-25859. [PMID: 39226029 DOI: 10.1021/jacs.4c09394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Organocatalytic ring-opening polymerization (ROP) of lactones is a green method for accessing renewable and biodegradable polyesters. Developing new organocatalysts with high activity and controllability is a major and challenging research topic in this field. Here, we report a series of organocatalysts to achieve a fast and controlled ROP of lactones. These catalysts incorporate (thio)urea and alkoxide in one molecule and act as initiators in the ROP. Such catalysts enable an effective intramolecular activation of initiator/chain end, as revealed by computational studies, resulting in higher activity and fewer (thio)urea loads than existing (thio)urea/alkoxide binary systems. These organocatalysts exhibit ultrahigh activity comparable to metal complexes, i.e., turnover number up to 900 and turnover of frequency up to 4860 min-1, affording polyesters with tailor-made structure, predicted molecular weights, narrow dispersity, less epimerization, and minimal transesterification. The catalyst synthesis is simple and scalable, allowing widely tuned activities of the ROP.
Collapse
Affiliation(s)
- Xiaowei Geng
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiong Liu
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinglei Yu
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Morodo R, Dumas DM, Zhang J, Lui KH, Hurst PJ, Bosio R, Campos LM, Park NH, Waymouth RM, Hedrick JL. Ring-Opening Polymerization of Cyclic Esters and Carbonates with (Thio)urea/Cyclopropenimine Organocatalytic Systems. ACS Macro Lett 2024:181-188. [PMID: 38252690 DOI: 10.1021/acsmacrolett.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Organocatalyzed ring-opening polymerization is a powerful tool for the synthesis of a variety of functional, readily degradable polyesters and polycarbonates. We report the use of (thio)ureas in combination with cyclopropenimine bases as a unique catalyst for the polymerization of cyclic esters and carbonates with a large span of reactivities. Methodologies of exceptionally effective and selective cocatalyst combinations were devised to produce polyesters and polycarbonates with narrow dispersities (Đ = 1.01-1.10). Correlations of the pKa of the various ureas and cyclopropenimine bases revealed the critical importance of matching the pKa of the two cocatalysts to achieve the most efficient polymerization conditions. It was found that promoting strong H-bonding interactions with a noncompetitive organic solvent, such as CH2Cl2, enabled greatly increased polymerization rates. The stereoselective polymerization of rac-lactide afforded stereoblock poly(lactides) that crystallize as stereocomplexes, as confirmed by wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Romain Morodo
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - David M Dumas
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Jia Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Kai H Lui
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Paul J Hurst
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Riccardo Bosio
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nathaniel H Park
- IBM Almaden Research Center, San Jose, California 95120, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - James L Hedrick
- IBM Almaden Research Center, San Jose, California 95120, United States
| |
Collapse
|
3
|
Nieuwland C, Verdijk R, Fonseca Guerra C, Bickelhaupt FM. More Electropositive is More Electronegative: Atom Size Determines C=X Group Electronegativity. Chemistry 2023:e202304161. [PMID: 38117278 DOI: 10.1002/chem.202304161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Opposite to what one might expect, we find that the C=X group can become effectively more, not less, electronegative when the Pauling electronegativity of atom X decreases down Groups 16, 15, and 14 of the Periodic Table. Our quantum-chemical analyses, show that, and why, this phenomenon is a direct consequence of the increasing size of atom X down a group. These findings can be applied to tuning and improving the hydrogen-bond donor strength of amides H2 NC(=X)R by increasingly withdrawing density from the NH2 group. A striking example is that H2 NC(=SiR2 )R is a stronger hydrogen-bond donor than H2 NC(=CR2 )R.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Ron Verdijk
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Célia Fonseca Guerra
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
4
|
Kim S, Schroeder CM, Jackson NE. Open Macromolecular Genome: Generative Design of Synthetically Accessible Polymers. ACS POLYMERS AU 2023; 3:318-330. [PMID: 37576712 PMCID: PMC10416319 DOI: 10.1021/acspolymersau.3c00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
A grand challenge in polymer science lies in the predictive design of new polymeric materials with targeted functionality. However, de novo design of functional polymers is challenging due to the vast chemical space and an incomplete understanding of structure-property relations. Recent advances in deep generative modeling have facilitated the efficient exploration of molecular design space, but data sparsity in polymer science is a major obstacle hindering progress. In this work, we introduce a vast polymer database known as the Open Macromolecular Genome (OMG), which contains synthesizable polymer chemistries compatible with known polymerization reactions and commercially available reactants selected for synthetic feasibility. The OMG is used in concert with a synthetically aware generative model known as Molecule Chef to identify property-optimized constitutional repeating units, constituent reactants, and reaction pathways of polymers, thereby advancing polymer design into the realm of synthetic relevance. As a proof-of-principle demonstration, we show that polymers with targeted octanol-water solubilities are readily generated together with monomer reactant building blocks and associated polymerization reactions. Suggested reactants are further integrated with Reaxys polymerization data to provide hypothetical reaction conditions (e.g., temperature, catalysts, and solvents). Broadly, the OMG is a polymer design approach capable of enabling data-intensive generative models for synthetic polymer design. Overall, this work represents a significant advance, enabling the property targeted design of synthetic polymers subject to practical synthetic constraints.
Collapse
Affiliation(s)
- Seonghwan Kim
- Department
of Materials Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M. Schroeder
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nicholas E. Jackson
- Department
of Chemistry, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman
Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Fiorentini F, Diment WT, Deacy AC, Kerr RWF, Faulkner S, Williams CK. Understanding catalytic synergy in dinuclear polymerization catalysts for sustainable polymers. Nat Commun 2023; 14:4783. [PMID: 37553344 PMCID: PMC10409799 DOI: 10.1038/s41467-023-40284-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Understanding the chemistry underpinning intermetallic synergy and the discovery of generally applicable structure-performances relationships are major challenges in catalysis. Additionally, high-performance catalysts using earth-abundant, non-toxic and inexpensive elements must be prioritised. Here, a series of heterodinuclear catalysts of the form Co(III)M(I/II), where M(I/II) = Na(I), K(I), Ca(II), Sr(II), Ba(II) are evaluated for three different polymerizations, by assessment of rate constants, turn over frequencies, polymer selectivity and control. This allows for comparisons of performances both within and between catalysts containing Group I and II metals for CO2/propene oxide ring-opening copolymerization (ROCOP), propene oxide/phthalic anhydride ROCOP and lactide ring-opening polymerization (ROP). The data reveal new structure-performance correlations that apply across all the different polymerizations: catalysts featuring s-block metals of lower Lewis acidity show higher rates and selectivity. The epoxide/heterocumulene ROCOPs both show exponential activity increases (vs. Lewis acidity, measured by the pKa of [M(OH2)m]n+), whilst the lactide ROP activity and CO2/epoxide selectivity show linear increases. Such clear structure-activity/selectivity correlations are very unusual, yet are fully rationalised by the polymerization mechanisms and the chemistry of the catalytic intermediates. The general applicability across three different polymerizations is significant for future exploitation of catalytic synergy and provides a framework to improve other catalysts.
Collapse
Affiliation(s)
| | - Wilfred T Diment
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Arron C Deacy
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Ryan W F Kerr
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | - Stephen Faulkner
- Department of Chemistry, University of Oxford, OX1 3TA, Oxford, United Kingdom
| | | |
Collapse
|
6
|
Lv W, Wang Y, Li M, Wang X, Tao Y. Precision Synthesis of Polypeptides via Living Anionic Ring-Opening Polymerization of N-Carboxyanhydrides by Tri-thiourea Catalysts. J Am Chem Soc 2022; 144:23622-23632. [PMID: 36533423 DOI: 10.1021/jacs.2c10950] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The chemistry of α-amino acid N-carboxyanhydrides (NCAs) has a history of over 100 years, but precise and efficient ring-opening polymerization methods for NCAs remain highly needed to facilitate the studies of polypeptides─that is, mimics of natural proteins─in various disciplines. Moreover, the universally accepted NCA polymerization mechanisms are largely limited to the "amine" and the "activated monomer" mechanisms, and the anionic ring-opening polymerization of NCAs has so far not been invoked. Herein, we show an unprecedented anion-binding catalytic system combining tripodal tri-thiourea with sodium thiophenolate that enables the fast and selective anionic ring-opening polymerization of NCAs. This method leads to the precision construction of various polypeptides with living polymerization behavior and is evidenced by narrow molecular weight distributions (Mw/Mn < 1.2), chain extension experiments, and minimal "activated monomer" pathway. Calculations and experimental results elucidate a living anionic polymerization mechanism, and high selectivities for monomer propagation relative to other deleterious side reactions, such as the "activated monomer" pathway, are attributed to the enhanced stabilization of the propagating carbamate anion, which is enforced by an intramolecular hydrogen bond within the tri-thiourea structure.
Collapse
Affiliation(s)
- Wenxiu Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China.,University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
7
|
Duan R, Hu C, Liu Y, Bian X, Pang X, Chen X. In Situ Initiation of Epoxides: Activated Metal Salt Catalysts for Cyclic Ester Polymerization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ranlong Duan
- University of Science and Technology of China, Hefei 230027, Anhui, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chenyang Hu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanlong Liu
- University of Science and Technology of China, Hefei 230027, Anhui, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinchao Bian
- University of Science and Technology of China, Hefei 230027, Anhui, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuan Pang
- University of Science and Technology of China, Hefei 230027, Anhui, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuesi Chen
- University of Science and Technology of China, Hefei 230027, Anhui, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
8
|
Liu Y, Zhang J, Kou X, Liu S, Li Z. Highly Active Organocatalysts for Stereoselective Ring-Opening Polymerization of Racemic Lactide at Room Temperature. ACS Macro Lett 2022; 11:1183-1189. [DOI: 10.1021/acsmacrolett.2c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yongxin Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jinbo Zhang
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xinhui Kou
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shaofeng Liu
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|