1
|
Xu D, Xiang J, Zheng H, Wang LM, Liu X, Chen L, Wu L, Li W. Connecting the liquid fragility to the average weakest metal-oxygen bond of its crystal in oxides. J Chem Phys 2024; 161:194501. [PMID: 39555760 DOI: 10.1063/5.0237677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024] Open
Abstract
Glass and crystal are inherently different material states in terms of their structural and physical features; consequently, the direct quantitative connection between crystal and glass is lacking. Herein, we first show that the liquid fragility m, which is featured by the negative departure degree of viscosity with the temperature at the glass transition temperature (Tg), has a direct exponential correlation with the ratio of the average longest metal-oxygen and the average phosphorus, silicon, or boron-oxygen bond lengths of the crystal in various oxides including phosphates, silicates, and borates. Such a result can be rationalized by the fact that the fragility m in these glass-formers is associated with the total network rigidity determined by the weakest bond due to the "bucket effect" and the bond pair inheritance of glass from that of the crystal. Our work connects direct features between glass and crystal with identical composition, providing a new viewpoint bridging glass and crystal.
Collapse
Affiliation(s)
- Di Xu
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450046, People's Republic of China
- Henan Academy of Sciences, Zhengzhou 450046, People's Republic of China
| | - Jichun Xiang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450046, People's Republic of China
- Henan Academy of Sciences, Zhengzhou 450046, People's Republic of China
| | - Haibing Zheng
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450046, People's Republic of China
- Henan Academy of Sciences, Zhengzhou 450046, People's Republic of China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Xin Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ling Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, People's Republic of China
| | - Liming Wu
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, People's Republic of China
| | - Weihua Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450046, People's Republic of China
- Henan Academy of Sciences, Zhengzhou 450046, People's Republic of China
| |
Collapse
|
2
|
Liu Y, Cai C, Zhu S, Zheng Z, Li G, Chen H, Li C, Sun H, Chou IM, Yu Y, Mei S, Wang L. Enhanced Hydrogen Evolution Catalysis of Pentlandite due to the Increases in Coordination Number and Sulfur Vacancy during Cubic-Hexagonal Phase Transition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311161. [PMID: 38456389 DOI: 10.1002/smll.202311161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/03/2024] [Indexed: 03/09/2024]
Abstract
The search for new phases is an important direction in materials science. The phase transition of sulfides results in significant changes in catalytic performance, such as MoS2 and WS2. Cubic pentlandite [cPn, (Fe, Ni)9S8] can be a functional material in batteries, solar cells, and catalytic fields. However, no report about the material properties of other phases of pentlandite exists. In this study, the unit-cell parameters of a new phase of pentlandite, sulfur-vacancy enriched hexagonal pentlandite (hPn), and the phase boundary between cPn and hPn are determined for the first time. Compared to cPn, the hPn shows a high coordination number, more sulfur vacancies, and high conductivity, which result in significantly higher hydrogen evolution performance of hPn than that of cPn and make the non-nano rock catalyst hPn superior to other most known nanosulfide catalysts. The increase of sulfur vacancies during phase transition provides a new approach to designing functional materials.
Collapse
Affiliation(s)
- Yuegao Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Chao Cai
- College of Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shengcai Zhu
- School of Materials, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhi Zheng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Guowu Li
- Crystal Structure Laboratory, Science Research Institute, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Haiyan Chen
- Mineral Physics Institute, Stony Brook University, Stony Brook, New York, 11794-2100, USA
- Argonne National Laboratory, Chicago, 60439, USA
| | - Chao Li
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haiyan Sun
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - I-Ming Chou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Yanan Yu
- Sichuan Energy Internet Research Institute, Tsinghua University, Chengdu, 610042, China
| | - Shenghua Mei
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Liping Wang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Li J, Geng Y, Xu Z, Zhang P, Garbarino G, Miao M, Hu Q, Wang X. Mechanochemistry and the Evolution of Ionic Bonds in Dense Silver Iodide. JACS AU 2023; 3:402-408. [PMID: 36873701 PMCID: PMC9975826 DOI: 10.1021/jacsau.2c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
External mechanical stress alters the nature of chemical bonds and triggers novel reactions, providing interesting synthetic protocols to supplement traditional solvent- or thermo-based chemical approaches. The mechanisms of mechanochemistry have been well studied in organic materials made of a carbon-centered polymeric framework and covalence force field. They convert stress into anisotropic strain which will engineer the length and strength of targeted chemical bonds. Here, we show that by compressing silver iodide in a diamond anvil cell, the external mechanical stress weakens the Ag-I ionic bonds and activate the global diffusion of super-ions. In contrast to conventional mechanochemistry, mechanical stress imposes unbiased influence on the ionicity of chemical bonds in this archetypal inorganic salt. Our combined synchrotron X-ray diffraction experiment and first-principles calculation demonstrate that upon the critical point of ionicity, the strong ionic Ag-I bonds break down, leading to the recovery of elemental solids from a decomposition reaction. Instead of densification, our results reveal the mechanism of an unexpected decomposition reaction through hydrostatic compression and suggest the sophisticated chemistry of simple inorganic compounds under extreme conditions.
Collapse
Affiliation(s)
- Jianfu Li
- School
of Physics and Electronic Information, Yantai
University, Yantai264005, P.R. China
| | - Yanlei Geng
- School
of Physics and Electronic Information, Yantai
University, Yantai264005, P.R. China
| | - Zhenzhen Xu
- School
of Physics and Electronic Information, Yantai
University, Yantai264005, P.R. China
| | - Pinhua Zhang
- School
of Physics and Electronic Engineering, Linyi
University, Linyi276005, P.R. China
| | - Gaston Garbarino
- European
Synchrotron Radiation Facility (ESRF), Grenoble38000, France
| | - Maosheng Miao
- Department
of Chemistry and Biochemistry, California
State University, Northridge, California91330, United States
| | - Qingyang Hu
- Center
for High Pressure Science and Technology Advanced Research, Beijing100094, P.R. China
| | - Xiaoli Wang
- School
of Physics and Electronic Information, Yantai
University, Yantai264005, P.R. China
| |
Collapse
|
4
|
Patel AK, Samatham SS, Rani E, Suresh KG, Singh H. Unveiling the correlation between structural and magnetic ordering in nano Co 1-xNi xTeO 4. Phys Chem Chem Phys 2023; 25:3144-3150. [PMID: 36621843 DOI: 10.1039/d2cp05592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials with unique structures and exotic magnetic phenomena are always intriguing; however, the direct correlation of structural and magnetic ordering up to a few nanometers remains critical. We report structural and magnetic properties of sol-gel grown Co1-xNixTeO4 (x = 0, 0.5 and 1) nanoparticles. An increase in the calcination temperature leads to the enhancement of the particle size and structural ordering. This is accompanied by changes in the magnetic interactions as well. Calcination at lower temperatures retains the short-range non-crystalline structure and superparamagnetic behavior, while calcination at higher temperatures results in long-range ordering in both the crystal and magnetic structures. Superparamagnetic to antiferromagnetic ordering observed from temperature- and field-dependent magnetization is attributed to the changes in structural ordering. This study presents a new family of nanomaterials displaying stable magnetic order up to ∼6 nm, where the magnetic properties can be uniquely controlled by changing the structural ordering.
Collapse
Affiliation(s)
- Akhilesh Kumar Patel
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - S Shanmukharao Samatham
- Department of Physics, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad 500 075, India
| | - Ekta Rani
- Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland.
| | - K G Suresh
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Harishchandra Singh
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076, India.,Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland.
| |
Collapse
|